Computer Science > Computer Vision and Pattern Recognition
[Submitted on 19 Jun 2022 (v1), last revised 11 Aug 2024 (this version, v3)]
Title:EATFormer: Improving Vision Transformer Inspired by Evolutionary Algorithm
View PDF HTML (experimental)Abstract:Motivated by biological evolution, this paper explains the rationality of Vision Transformer by analogy with the proven practical evolutionary algorithm (EA) and derives that both have consistent mathematical formulation. Then inspired by effective EA variants, we propose a novel pyramid EATFormer backbone that only contains the proposed EA-based transformer (EAT) block, which consists of three residual parts, i.e., Multi-scale region aggregation, global and local interaction, and feed-forward network modules, to model multi-scale, interactive, and individual information separately. Moreover, we design a task-related head docked with transformer backbone to complete final information fusion more flexibly and improve a modulated deformable MSA to dynamically model irregular locations. Massive quantitative and quantitative experiments on image classification, downstream tasks, and explanatory experiments demonstrate the effectiveness and superiority of our approach over state-of-the-art methods. E.g., our Mobile (1.8 M), Tiny (6.1 M), Small (24.3 M), and Base (49.0 M) models achieve 69.4, 78.4, 83.1, and 83.9 Top-1 only trained on ImageNet-1K with naive training recipe; EATFormer-Tiny/Small/Base armed Mask-R-CNN obtain 45.4/47.4/49.0 box AP and 41.4/42.9/44.2 mask AP on COCO detection, surpassing contemporary MPViT-T, Swin-T, and Swin-S by 0.6/1.4/0.5 box AP and 0.4/1.3/0.9 mask AP separately with less FLOPs; Our EATFormer-Small/Base achieve 47.3/49.3 mIoU on ADE20K by Upernet that exceeds Swin-T/S by 2.8/1.7. Code is available at this https URL.
Submission history
From: Jiangning Zhang [view email][v1] Sun, 19 Jun 2022 04:49:35 UTC (18,029 KB)
[v2] Fri, 19 Apr 2024 10:28:03 UTC (19,777 KB)
[v3] Sun, 11 Aug 2024 14:09:09 UTC (19,792 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.