Computer Science > Machine Learning
[Submitted on 30 May 2022 (v1), last revised 11 Jun 2023 (this version, v3)]
Title:Level Up with RealAEs: Leveraging Domain Constraints in Feature Space to Strengthen Robustness of Android Malware Detection
View PDFAbstract:The vulnerability to adversarial examples remains one major obstacle for Machine Learning (ML)-based Android malware detection. Realistic attacks in the Android malware domain create Realizable Adversarial Examples (RealAEs), i.e., AEs that satisfy the domain constraints of Android malware. Recent studies have shown that using such RealAEs in Adversarial Training (AT) is more effective in defending against realistic attacks than using unrealizable AEs (unRealAEs). This is because RealAEs allow defenders to explore certain pockets in the feature space that are vulnerable to realistic attacks. However, existing defenses commonly generate RealAEs in the problem space, which is known to be time-consuming and impractical for AT. In this paper, we propose to generate RealAEs in the feature space, leading to a simpler and more efficient solution. Our approach is driven by a novel interpretation of Android domain constraints in the feature space. More concretely, our defense first learns feature-space domain constraints by extracting meaningful feature dependencies from data and then applies them to generating feature-space RealAEs during AT. Extensive experiments on DREBIN, a well-known Android malware detector, demonstrate that our new defense outperforms not only unRealAE-based AT but also the state-of-the-art defense that relies on non-uniform perturbations. We further validate the ability of our learned feature-space domain constraints in representing Android malware properties by showing that our feature-space domain constraints can help distinguish RealAEs from unRealAEs.
Submission history
From: Hamid Bostani [view email][v1] Mon, 30 May 2022 14:21:16 UTC (433 KB)
[v2] Mon, 5 Dec 2022 15:58:56 UTC (1,612 KB)
[v3] Sun, 11 Jun 2023 06:37:55 UTC (2,574 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.