Mathematics > Numerical Analysis
[Submitted on 30 May 2022]
Title:Hybrid Numerical Modeling of Ballistic Clay under Low-Speed Impact using Artificial Neural Networks
View PDFAbstract:Roma Plastilina No. 1 clay has been widely used as a conservative boundary condition in bulletproof vests, namely to play the role of a human body. Interestingly, the effect of this boundary condition on the ballistic performance of the vests is indiscernible. Moreover, back face deformation should be characterized by measuring the indentation in the deformed clay, which is important for determining the lethality of gunshots. Therefore, several studies have focused on modeling not only bulletproof vests but also the clay backing material. Despite various attempts to develop a suitable numerical model, determining the appropriate physical parameters that can capture the high-strain-rate behavior of clay is still challenging. In this study, we predicted indentation depth in clay using an artificial neural network (ANN) and determined the optimal material parameters required for a finite element method (FEM)-based model using an inverse tracking method. Our ANN-FEM hybrid model successfully optimized high-strain-rate material parameters without the need for any independent mechanical tests. The proposed novel model achieved a high prediction accuracy of over 98% referring impact cases.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.