Computer Science > Information Theory
[Submitted on 18 May 2022]
Title:Secure Coding via Gaussian Random Fields
View PDFAbstract:Inverse probability problems whose generative models are given by strictly nonlinear Gaussian random fields show the all-or-nothing behavior: There exists a critical rate at which Bayesian inference exhibits a phase transition. Below this rate, the optimal Bayesian estimator recovers the data perfectly, and above it the recovered data becomes uncorrelated. This study uses the replica method from the theory of spin glasses to show that this critical rate is the channel capacity. This interesting finding has a particular application to the problem of secure transmission: A strictly nonlinear Gaussian random field along with random binning can be used to securely encode a confidential message in a wiretap channel. Our large-system characterization demonstrates that this secure coding scheme asymptotically achieves the secrecy capacity of the Gaussian wiretap channel.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.