Computer Science > Machine Learning
[Submitted on 6 May 2022 (v1), last revised 2 Jun 2022 (this version, v2)]
Title:The Road to Explainability is Paved with Bias: Measuring the Fairness of Explanations
View PDFAbstract:Machine learning models in safety-critical settings like healthcare are often blackboxes: they contain a large number of parameters which are not transparent to users. Post-hoc explainability methods where a simple, human-interpretable model imitates the behavior of these blackbox models are often proposed to help users trust model predictions. In this work, we audit the quality of such explanations for different protected subgroups using real data from four settings in finance, healthcare, college admissions, and the US justice system. Across two different blackbox model architectures and four popular explainability methods, we find that the approximation quality of explanation models, also known as the fidelity, differs significantly between subgroups. We also demonstrate that pairing explainability methods with recent advances in robust machine learning can improve explanation fairness in some settings. However, we highlight the importance of communicating details of non-zero fidelity gaps to users, since a single solution might not exist across all settings. Finally, we discuss the implications of unfair explanation models as a challenging and understudied problem facing the machine learning community.
Submission history
From: Aparna Balagopalan [view email][v1] Fri, 6 May 2022 15:23:32 UTC (2,388 KB)
[v2] Thu, 2 Jun 2022 17:01:15 UTC (1,525 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.