Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Apr 2022]
Title:Arbitrary Bit-width Network: A Joint Layer-Wise Quantization and Adaptive Inference Approach
View PDFAbstract:Conventional model quantization methods use a fixed quantization scheme to different data samples, which ignores the inherent "recognition difficulty" differences between various samples. We propose to feed different data samples with varying quantization schemes to achieve a data-dependent dynamic inference, at a fine-grained layer level. However, enabling this adaptive inference with changeable layer-wise quantization schemes is challenging because the combination of bit-widths and layers is growing exponentially, making it extremely difficult to train a single model in such a vast searching space and use it in practice. To solve this problem, we present the Arbitrary Bit-width Network (ABN), where the bit-widths of a single deep network can change at runtime for different data samples, with a layer-wise granularity. Specifically, first we build a weight-shared layer-wise quantizable "super-network" in which each layer can be allocated with multiple bit-widths and thus quantized differently on demand. The super-network provides a considerably large number of combinations of bit-widths and layers, each of which can be used during inference without retraining or storing myriad models. Second, based on the well-trained super-network, each layer's runtime bit-width selection decision is modeled as a Markov Decision Process (MDP) and solved by an adaptive inference strategy accordingly. Experiments show that the super-network can be built without accuracy degradation, and the bit-widths allocation of each layer can be adjusted to deal with various inputs on the fly. On ImageNet classification, we achieve 1.1% top1 accuracy improvement while saving 36.2% BitOps.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.