Computer Science > Computer Vision and Pattern Recognition
[Submitted on 17 Apr 2022]
Title:In Defense of Subspace Tracker: Orthogonal Embedding for Visual Tracking
View PDFAbstract:The paper focuses on a classical tracking model, subspace learning, grounded on the fact that the targets in successive frames are considered to reside in a low-dimensional subspace or manifold due to the similarity in their appearances. In recent years, a number of subspace trackers have been proposed and obtained impressive results. Inspired by the most recent results that the tracking performance is boosted by the subspace with discrimination capability learned over the recently localized targets and their immediately surrounding background, this work aims at solving such a problem: how to learn a robust low-dimensional subspace to accurately and discriminatively represent these target and background samples. To this end, a discriminative approach, which reliably separates the target from its surrounding background, is injected into the subspace learning by means of joint learning, achieving a dimension-adaptive subspace with superior discrimination capability. The proposed approach is extensively evaluated and compared with the state-of-the-art trackers on four popular tracking benchmarks. The experimental results demonstrate that the proposed tracker performs competitively against its counterparts. In particular, it achieves more than 9% performance increase compared with the state-of-the-art subspace trackers.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.