Computer Science > Sound
[Submitted on 30 Mar 2022 (v1), last revised 5 Apr 2022 (this version, v2)]
Title:Federated Domain Adaptation for ASR with Full Self-Supervision
View PDFAbstract:Cross-device federated learning (FL) protects user privacy by collaboratively training a model on user devices, therefore eliminating the need for collecting, storing, and manually labeling user data. While important topics such as the FL training algorithm, non-IID-ness, and Differential Privacy have been well studied in the literature, this paper focuses on two challenges of practical importance for improving on-device ASR: the lack of ground-truth transcriptions and the scarcity of compute resource and network bandwidth on edge devices. First, we propose a FL system for on-device ASR domain adaptation with full self-supervision, which uses self-labeling together with data augmentation and filtering techniques. The system can improve a strong Emformer-Transducer based ASR model pretrained on out-of-domain data, using in-domain audio without any ground-truth transcriptions. Second, to reduce the training cost, we propose a self-restricted RNN Transducer (SR-RNN-T) loss, a variant of alignment-restricted RNN-T that uses Viterbi alignments from self-supervision. To further reduce the compute and network cost, we systematically explore adapting only a subset of weights in the Emformer-Transducer. Our best training recipe achieves a $12.9\%$ relative WER reduction over the strong out-of-domain baseline, which equals $70\%$ of the reduction achievable with full human supervision and centralized training.
Submission history
From: Junteng Jia [view email][v1] Wed, 30 Mar 2022 00:50:16 UTC (217 KB)
[v2] Tue, 5 Apr 2022 17:57:30 UTC (217 KB)
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.