Computer Science > Sound
[Submitted on 29 Mar 2022 (v1), last revised 12 Apr 2022 (this version, v2)]
Title:Interactive Audio-text Representation for Automated Audio Captioning with Contrastive Learning
View PDFAbstract:Automated Audio captioning (AAC) is a cross-modal task that generates natural language to describe the content of input audio. Most prior works usually extract single-modality acoustic features and are therefore sub-optimal for the cross-modal decoding task. In this work, we propose a novel AAC system called CLIP-AAC to learn interactive cross-modality representation with both acoustic and textual information. Specifically, the proposed CLIP-AAC introduces an audio-head and a text-head in the pre-trained encoder to extract audio-text information. Furthermore, we also apply contrastive learning to narrow the domain difference by learning the correspondence between the audio signal and its paired captions. Experimental results show that the proposed CLIP-AAC approach surpasses the best baseline by a significant margin on the Clotho dataset in terms of NLP evaluation metrics. The ablation study indicates that both the pre-trained model and contrastive learning contribute to the performance gain of the AAC model.
Submission history
From: Chen Chen [view email][v1] Tue, 29 Mar 2022 13:06:46 UTC (571 KB)
[v2] Tue, 12 Apr 2022 06:50:07 UTC (570 KB)
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.