Computer Science > Artificial Intelligence
[Submitted on 26 Mar 2022 (v1), last revised 25 Apr 2022 (this version, v2)]
Title:Augmenting Knowledge Graphs for Better Link Prediction
View PDFAbstract:Embedding methods have demonstrated robust performance on the task of link prediction in knowledge graphs, by mostly encoding entity relationships. Recent methods propose to enhance the loss function with a literal-aware term. In this paper, we propose KGA: a knowledge graph augmentation method that incorporates literals in an embedding model without modifying its loss function. KGA discretizes quantity and year values into bins, and chains these bins both horizontally, modeling neighboring values, and vertically, modeling multiple levels of granularity. KGA is scalable and can be used as a pre-processing step for any existing knowledge graph embedding model. Experiments on legacy benchmarks and a new large benchmark, DWD, show that augmenting the knowledge graph with quantities and years is beneficial for predicting both entities and numbers, as KGA outperforms the vanilla models and other relevant baselines. Our ablation studies confirm that both quantities and years contribute to KGA's performance, and that its performance depends on the discretization and binning settings. We make the code, models, and the DWD benchmark publicly available to facilitate reproducibility and future research.
Submission history
From: Filip Ilievski [view email][v1] Sat, 26 Mar 2022 02:06:17 UTC (410 KB)
[v2] Mon, 25 Apr 2022 03:43:30 UTC (410 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.