Computer Science > Computer Vision and Pattern Recognition
[Submitted on 9 Mar 2022]
Title:Normal and Visibility Estimation of Human Face from a Single Image
View PDFAbstract:Recent work on the intrinsic image of humans starts to consider the visibility of incident illumination and encodes the light transfer function by spherical harmonics. In this paper, we show that such a light transfer function can be further decomposed into visibility and cosine terms related to surface normal. Such decomposition allows us to recover the surface normal in addition to visibility. We propose a deep learning-based approach with a reconstruction loss for training on real-world images. Results show that compared with previous works, the reconstruction of human face from our method better reveals the surface normal and shading details especially around regions where visibility effect is strong.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.