Computer Science > Social and Information Networks
[Submitted on 22 Oct 2021 (v1), last revised 24 Jul 2022 (this version, v2)]
Title:Look behind the Censorship: Reposting-User Characterization and Muted-Topic Restoration
View PDFAbstract:The emergence of social media has largely eased the way people receive information and participate in public discussions. However, in countries with strict regulations on discussions in the public space, social media is no exception. To limit the degree of dissent or inhibit the spread of "harmful" information, a common approach is to impose information operations such as censorship/suspension on social media. In this paper, we focus on a study of censorship on Weibo, the counterpart of Twitter in China. Specifically, we 1) create a web-scraping pipeline and collect a large dataset solely focus on the reposts from Weibo; 2) discover the characteristics of users whose reposts contain censored information, in terms of gender, device, and account type; and 3) conduct a thematic analysis by extracting and analyzing topic information. Note that although the original posts are no longer visible, we can use comments users wrote when reposting the original post to infer the topic of the original content. We find that such efforts can recover the discussions around social events that triggered massive discussions but were later muted. Further, we show the variations of inferred topics across different user groups and time frames.
Submission history
From: Hanjia Lyu [view email][v1] Fri, 22 Oct 2021 17:03:07 UTC (3,391 KB)
[v2] Sun, 24 Jul 2022 00:07:14 UTC (5,309 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.