Computer Science > Robotics
[Submitted on 5 Oct 2021 (v1), last revised 26 Feb 2024 (this version, v2)]
Title:Deep Reinforcement Learning for Decentralized Multi-Robot Exploration With Macro Actions
View PDFAbstract:Cooperative multi-robot teams need to be able to explore cluttered and unstructured environments while dealing with communication dropouts that prevent them from exchanging local information to maintain team coordination. Therefore, robots need to consider high-level teammate intentions during action selection. In this letter, we present the first Macro Action Decentralized Exploration Network (MADE-Net) using multi-agent deep reinforcement learning (DRL) to address the challenges of communication dropouts during multi-robot exploration in unseen, unstructured, and cluttered environments. Simulated robot team exploration experiments were conducted and compared against classical and DRL methods where MADE-Net outperformed all benchmark methods in terms of computation time, total travel distance, number of local interactions between robots, and exploration rate across various degrees of communication dropouts. A scalability study in 3D environments showed a decrease in exploration time with MADE-Net with increasing team and environment sizes. The experiments presented highlight the effectiveness and robustness of our method.
Submission history
From: Aaron (Hao) Tan [view email][v1] Tue, 5 Oct 2021 17:13:55 UTC (679 KB)
[v2] Mon, 26 Feb 2024 16:11:24 UTC (1,648 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.