Computer Science > Emerging Technologies
[Submitted on 4 Jun 2020]
Title:An Inference and Learning Engine for Spiking Neural Networks in Computational RAM (CRAM)
View PDFAbstract:Spiking Neural Networks (SNN) represent a biologically inspired computation model capable of emulating neural computation in human brain and brain-like structures. The main promise is very low energy consumption. Unfortunately, classic Von Neumann architecture based SNN accelerators often fail to address demanding computation and data transfer requirements efficiently at scale. In this work, we propose a promising alternative, an in-memory SNN accelerator based on Spintronic Computational RAM (CRAM) to overcome scalability limitations, which can reduce the energy consumption by up to 164.1$\times$ when compared to a representative ASIC solution.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.