Mathematics > Quantum Algebra
[Submitted on 2 May 2019 (v1), last revised 1 May 2020 (this version, v3)]
Title:Hopf-Frobenius Algebras and a Simpler Drinfeld Double
View PDFAbstract:The zx-calculus and related theories are based on so-called interacting Frobenius algebras, where a pair of dagger-special commutative Frobenius algebras jointly form a pair of Hopf algebras. In this setting we introduce a generalisation of this structure, Hopf-Frobenius algebras, starting from a single Hopf algebra which is not necessarily commutative or cocommutative. We provide a few necessary and sufficient conditions for a Hopf algebra to be a Hopf-Frobenius algebra, and show that every Hopf algebra in the category of finite dimensional vector spaces is a Hopf-Frobenius algebra. In addition, we show that this construction is unique up to an invertible scalar. Due to this fact, Hopf-Frobenius algebras provide two canonical notions of duality, and give us a "dual" Hopf algebra that is isomorphic to the usual dual Hopf algebra in a compact closed category. We use this isomorphism to construct a Hopf algebra isomorphic to the Drinfeld double, but has a much simpler presentation.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Thu, 2 May 2019 15:02:31 UTC (84 KB)
[v2] Sun, 7 Jul 2019 14:04:17 UTC (89 KB)
[v3] Fri, 1 May 2020 04:12:00 UTC (88 KB)
Current browse context:
math.QA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.