Computer Science > Data Structures and Algorithms
[Submitted on 14 Nov 2018]
Title:Communication-Optimal Distributed Dynamic Graph Clustering
View PDFAbstract:We consider the problem of clustering graph nodes over large-scale dynamic graphs, such as citation networks, images and web networks, when graph updates such as node/edge insertions/deletions are observed distributively. We propose communication-efficient algorithms for two well-established communication models namely the message passing and the blackboard models. Given a graph with $n$ nodes that is observed at $s$ remote sites over time $[1,t]$, the two proposed algorithms have communication costs $\tilde{O}(ns)$ and $\tilde{O}(n+s)$ ($\tilde{O}$ hides a polylogarithmic factor), almost matching their lower bounds, $\Omega(ns)$ and $\Omega(n+s)$, respectively, in the message passing and the blackboard models. More importantly, we prove that at each time point in $[1,t]$ our algorithms generate clustering quality nearly as good as that of centralizing all updates up to that time and then applying a standard centralized clustering algorithm. We conducted extensive experiments on both synthetic and real-life datasets which confirmed the communication efficiency of our approach over baseline algorithms while achieving comparable clustering results.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.