Computer Science > Machine Learning
[Submitted on 1 Jul 2016]
Title:Less-forgetting Learning in Deep Neural Networks
View PDFAbstract:A catastrophic forgetting problem makes deep neural networks forget the previously learned information, when learning data collected in new environments, such as by different sensors or in different light conditions. This paper presents a new method for alleviating the catastrophic forgetting problem. Unlike previous research, our method does not use any information from the source domain. Surprisingly, our method is very effective to forget less of the information in the source domain, and we show the effectiveness of our method using several experiments. Furthermore, we observed that the forgetting problem occurs between mini-batches when performing general training processes using stochastic gradient descent methods, and this problem is one of the factors that degrades generalization performance of the network. We also try to solve this problem using the proposed method. Finally, we show our less-forgetting learning method is also helpful to improve the performance of deep neural networks in terms of recognition rates.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.