Computer Science > Social and Information Networks
[Submitted on 8 Dec 2015]
Title:Predicting Popularity of Twitter Accounts through the Discovery of Link-Propagating Early Adopters
View PDFAbstract:In this paper, we propose a method of ranking recently created Twitter accounts according to their prospective popularity. Early detection of new promising accounts is useful for trend prediction, viral marketing, user recommendation, and so on. New accounts are, however, difficult to evaluate because they have not established their reputations, and we cannot apply existing link-based or other popularity-based account evaluation methods. Our method first finds "early adopters", i.e., users who often find new good information sources earlier than others. Our method then regards new accounts followed by good early adopters as promising, even if they do not have many followers now. In order to find good early adopters, we estimate the frequency of link propagation from each account, i.e., how many times the follow links from the account have been copied by its followers. If its followers have copied many of its follow links in the past, the account must be an early adopter, who find good information sources earlier than its followers. We develop a method of inferring which links are created by copying which links. One advantage of our method is that our method only uses information that can be easily obtained only by crawling neighbors of the target accounts in the current Twitter graph. We evaluated our method by an experiment on Twitter data. We chose then-new accounts from an old snapshot of Twitter, compute their ranking by our method, and compare it with the number of followers the accounts currently have. The result shows that our method produces better rankings than various baseline methods, especially for new accounts that have only a few followers.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.