Computer Science > Sound
[Submitted on 19 Jan 2015]
Title:Listening to features
View PDFAbstract:This work explores nonparametric methods which aim at synthesizing audio from low-dimensionnal acoustic features typically used in MIR frameworks. Several issues prevent this task to be straightforwardly achieved. Such features are designed for analysis and not for synthesis, thus favoring high-level description over easily inverted acoustic representation. Whereas some previous studies already considered the problem of synthesizing audio from features such as Mel-Frequency Cepstral Coefficients, they mainly relied on the explicit formula used to compute those features in order to inverse them. Here, we instead adopt a simple blind approach, where arbitrary sets of features can be used during synthesis and where reconstruction is exemplar-based. After testing the approach on a speech synthesis from well known features problem, we apply it to the more complex task of inverting songs from the Million Song Dataset. What makes this task harder is twofold. First, that features are irregularly spaced in the temporal domain according to an onset-based segmentation. Second the exact method used to compute these features is unknown, although the features for new audio can be computed using their API as a black-box. In this paper, we detail these difficulties and present a framework to nonetheless attempting such synthesis by concatenating audio samples from a training dataset, whose features have been computed beforehand. Samples are selected at the segment level, in the feature space with a simple nearest neighbor search. Additionnal constraints can then be defined to enhance the synthesis pertinence. Preliminary experiments are presented using RWC and GTZAN audio datasets to synthesize tracks from the Million Song Dataset.
Submission history
From: Manuel Moussallam [view email][v1] Mon, 19 Jan 2015 19:41:35 UTC (3,790 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.