Computer Science > Information Theory
[Submitted on 8 Jul 2024]
Title:Recovering a Message from an Incomplete Set of Noisy Fragments
View PDF HTML (experimental)Abstract:We consider the problem of communicating over a channel that breaks the message block into fragments of random lengths, shuffles them out of order, and deletes a random fraction of the fragments. Such a channel is motivated by applications in molecular data storage and forensics, and we refer to it as the torn-paper channel. We characterize the capacity of this channel under arbitrary fragment length distributions and deletion probabilities. Precisely, we show that the capacity is given by a closed-form expression that can be interpreted as F - A, where F is the coverage fraction ,i.e., the fraction of the input codeword that is covered by output fragments, and A is an alignment cost incurred due to the lack of ordering in the output fragments. We then consider a noisy version of the problem, where the fragments are corrupted by binary symmetric noise. We derive upper and lower bounds to the capacity, both of which can be seen as F - A expressions. These bounds match for specific choices of fragment length distributions, and they are approximately tight in cases where there are not too many short fragments.
Submission history
From: Aditya Narayan Ravi [view email][v1] Mon, 8 Jul 2024 01:37:02 UTC (416 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.