Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 May 2024]
Title:The Power of Next-Frame Prediction for Learning Physical Laws
View PDFAbstract:Next-frame prediction is a useful and powerful method for modelling and understanding the dynamics of video data. Inspired by the empirical success of causal language modelling and next-token prediction in language modelling, we explore the extent to which next-frame prediction serves as a strong foundational learning strategy (analogous to language modelling) for inducing an understanding of the visual world. In order to quantify the specific visual understanding induced by next-frame prediction, we introduce six diagnostic simulation video datasets derived from fundamental physical laws created by varying physical constants such as gravity and mass. We demonstrate that our models trained only on next-frame prediction are capable of predicting the value of these physical constants (e.g. gravity) without having been trained directly to learn these constants via a regression task. We find that the generative training phase alone induces a model state that can predict physical constants significantly better than that of a random model, improving the loss by a factor of between 1.28 to 6.24. We conclude that next-frame prediction shows great promise as a general learning strategy to induce understanding of the many `laws' that govern the visual domain without the need for explicit labelling.
Submission history
From: Tom Winterbottom [view email][v1] Tue, 21 May 2024 17:55:54 UTC (1,941 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.