Computer Science > Computation and Language
[Submitted on 28 Mar 2022]
Title:Generative Design Ideation: A Natural Language Generation Approach
View PDFAbstract:This paper aims to explore a generative approach for knowledge-based design ideation by applying the latest pre-trained language models in artificial intelligence (AI). Specifically, a method of fine-tuning the generative pre-trained transformer using the USPTO patent database is proposed. The AI-generated ideas are not only in concise and understandable language but also able to synthesize the target design with external knowledge sources with controllable knowledge distance. The method is tested in a case study of rolling toy design and the results show good performance in generating ideas of varied novelty with near-field and far-field source knowledge.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.