Document Open Access Logo

Restless Temporal Path Parameterized Above Lower Bounds

Author Philipp Zschoche



PDF
Thumbnail PDF

File

LIPIcs.STACS.2023.55.pdf
  • Filesize: 0.77 MB
  • 16 pages

Document Identifiers

Author Details

Philipp Zschoche
  • Faculty IV, Algorithmics and Computational Complexity, Technische Universität Berlin, Germany

Acknowledgements

I am grateful to Rolf Niedermeier, Till Fluschnik, and anonymous reviewers for constructive and detailed feedback.

Cite As Get BibTex

Philipp Zschoche. Restless Temporal Path Parameterized Above Lower Bounds. In 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 254, pp. 55:1-55:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/LIPIcs.STACS.2023.55

Abstract

Reachability questions are one of the most fundamental algorithmic primitives in temporal graphs - graphs whose edge set changes over discrete time steps. A core problem here is the NP-hard Short Restless Temporal Path: given a temporal graph G, two distinct vertices s and z, and two numbers δ and k, is there a δ-restless temporal s-z path of length at most k? A temporal path is a path whose edges appear in chronological order and a temporal path is δ-restless if two consecutive path edges appear at most δ time steps apart from each other. Among others, this problem has applications in neuroscience and epidemiology. While Short Restless Temporal Path is known to be computationally hard, e.g., it is NP-hard even if the temporal graph consists of three discrete time steps and it is W[1]-hard when parameterized by the feedback vertex number of the underlying graph, it is fixed-parameter tractable when parameterized by the path length k. We improve on this by showing that Short Restless Temporal Path can be solved in (randomized) 4^(k-d)|G|^O(1) time, where d is the minimum length of a temporal s-z path.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph algorithms
Keywords
  • temporal graphs
  • FPT
  • above-lower-bound parameterization

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Eleni C. Akrida, Jurek Czyzowicz, Leszek Gąsieniec, Łukasz Kuszner, and Paul G. Spirakis. Temporal flows in temporal networks. Journal of Computer and System Sciences, 103:46-60, 2019. URL: https://doi.org/10.1016/j.jcss.2019.02.003.
  2. Eleni C. Akrida, Leszek Gąsieniec, George B. Mertzios, and Paul G. Spirakis. The complexity of optimal design of temporally connected graphs. Theory of Computing Systems, 61(3):907-944, 2017. URL: https://doi.org/10.1007/s00224-017-9757-x.
  3. Eleni C. Akrida, George B. Mertzios, Paul G. Spirakis, and Christoforos L. Raptopoulos. The temporal explorer who returns to the base. Journal of Computer and System Sciences, 120:179-193, 2021. URL: https://doi.org/10.1016/j.jcss.2021.04.001.
  4. Noga Alon, Gregory Z. Gutin, Eun Jung Kim, Stefan Szeider, and Anders Yeo. Solving MAX-r-SAT above a tight lower bound. Algorithmica, 61(3):638-655, 2011. URL: https://doi.org/10.1007/s00453-010-9428-7.
  5. Kyriakos Axiotis and Dimitris Fotakis. On the size and the approximability of minimum temporally connected subgraphs. In Proceedings of the 43rd International Colloquium on Automata, Languages, and Programming (ICALP), volume 55 of Leibniz International Proceedings in Informatics, pages 149:1-149:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.ICALP.2016.149.
  6. Albert-László Barabási. Network Science. Cambridge University Press, 2016. Google Scholar
  7. Matthias Bentert, Anne-Sophie Himmel, André Nichterlein, and Rolf Niedermeier. Efficient computation of optimal temporal walks under waiting-time constraints. Applied Network Science, 5(72):1-26, 2020. URL: https://doi.org/10.1007/s41109-020-00311-0.
  8. Ivona Bezáková, Radu Curticapean, Holger Dell, and Fedor V. Fomin. Finding detours is fixed-parameter tractable. SIAM Journal on Discrete Mathematics, 33(4):2326-2345, 2019. URL: https://doi.org/10.1137/17M1148566.
  9. Sandeep Bhadra and Afonso Ferreira. Computing multicast trees in dynamic networks and the complexity of connected components in evolving graphs. Journal of Internet Services and Applications, 3(3):269-275, 2012. URL: https://doi.org/10.1007/s13174-012-0073-z.
  10. Hans L. Bodlaender and Tom C. van der Zanden. On exploring always-connected temporal graphs of small pathwidth. Information Processing Letters, 142:68-71, 2019. URL: https://doi.org/10.1016/j.ipl.2018.10.016.
  11. Binh-Minh Bui-Xuan, Afonso Ferreira, and Aubin Jarry. Computing shortest, fastest, and foremost journeys in dynamic networks. International Journal of Foundations of Computer Science, 14(2):267-285, 2003. URL: https://doi.org/10.1142/S0129054103001728.
  12. Benjamin M. Bumpus and Kitty Meeks. Edge exploration of temporal graphs. In Proceedings of the 32st International Workshop on Combinatorial Algorithms (IWOCA), volume 12757 of Lecture Notes in Computer Science, pages 107-121. Springer, 2021. URL: https://doi.org/10.1007/978-3-030-79987-8_8.
  13. Arnaud Casteigts, Anne-Sophie Himmel, Hendrik Molter, and Philipp Zschoche. Finding temporal paths under waiting time constraints. Algorithmica, 83(9):2754-2802, 2021. URL: https://doi.org/10.1007/s00453-021-00831-w.
  14. Robert Crowston, Michael R. Fellows, Gregory Z. Gutin, Mark Jones, Eun Jung Kim, Fran Rosamond, Imre Z. Ruzsa, Stéphan Thomassé, and Anders Yeo. Satisfying more than half of a system of linear equations over GF(2): A multivariate approach. Theory of Computing Systems, 80(4):687-696, 2014. URL: https://doi.org/10.1016/j.jcss.2013.10.002.
  15. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  16. Argyrios Deligkas and Igor Potapov. Optimizing reachability sets in temporal graphs by delaying. Information and Computation, 285(Part):104890, 2022. URL: https://doi.org/10.1016/j.ic.2022.104890.
  17. Reinhard Diestel. Graph Theory, volume 173. Springer, 5 edition, 2016. URL: https://doi.org/10.1007/978-3-662-53622-3.
  18. Jessica Enright, Kitty Meeks, George B. Mertzios, and Viktor Zamaraev. Deleting edges to restrict the size of an epidemic in temporal networks. Journal of Computer and System Sciences, 119:60-77, 2021. URL: https://doi.org/10.1016/j.jcss.2021.01.007.
  19. Jessica Enright, Kitty Meeks, and Fiona Skerman. Assigning times to minimise reachability in temporal graphs. Journal of Computer and System Sciences, 115:169-186, 2021. URL: https://doi.org/10.1016/j.jcss.2020.08.001.
  20. Thomas Erlebach, Michael Hoffmann, and Frank Kammer. On temporal graph exploration. Journal of Computer and System Sciences, 119:1-18, 2021. URL: https://doi.org/10.1016/j.jcss.2021.01.005.
  21. Thomas Erlebach, Frank Kammer, Kelin Luo, Andrej Sajenko, and Jakob T. Spooner. Two moves per time step make a difference. In Proceedings of the 46th International Colloquium on Automata, Languages, and Programming (ICALP), volume 132 of Leibniz International Proceedings in Informatics, pages 141:1-141:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.ICALP.2019.141.
  22. Thomas Erlebach and Jakob T. Spooner. Faster exploration of degree-bounded temporal graphs. In Proceedings of the 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS), volume 117 of Leibniz International Proceedings in Informatics, pages 36:1-36:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.MFCS.2018.36.
  23. Till Fluschnik, Hendrik Molter, Rolf Niedermeier, Malte Renken, and Philipp Zschoche. Temporal graph classes: A view through temporal separators. Theoretical Computer Science, 806:197-218, 2020. URL: https://doi.org/10.1016/j.tcs.2019.03.031.
  24. Eugen Füchsle, Hendrik Molter, Rolf Niedermeier, and Malte Renken. Delay-robust routes in temporal graphs. In Proceedings of the 39th International Symposium on Theoretical Aspects of Computer Science (STACS), Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. To appear. Google Scholar
  25. Gregory Z. Gutin, Eun Jung Kim, Michael Lampis, and Valia Mitsou. Vertex cover problem parameterized above and below tight bounds. Theory of Computing Systems, 48(2):402-410, 2011. URL: https://doi.org/10.1007/s00224-010-9262-y.
  26. Gregory Z. Gutin and Matthias Mnich. A survey on graph problems parameterized above and below guaranteed values. CoRR, abs/2207.12278, 2022. URL: https://doi.org/10.48550/arXiv.2207.12278.
  27. Gregory Z. Gutin, Leo van Iersel, Matthias Mnich, and Anders Yeo. Every ternary permutation constraint satisfaction problem parameterized above average has a kernel with a quadratic number of variables. Journal of Computer and System Sciences, 78(1):151-163, 2012. URL: https://doi.org/10.1016/j.jcss.2011.01.004.
  28. Petter Holme. Temporal network structures controlling disease spreading. Physical Review E, 94.2:022305, 2016. URL: https://doi.org/10.1103/PhysRevE.94.022305.
  29. Leon Kellerhals, Tomohiro Koana, and Pascal Kunz. Vertex cover and feedback vertex set above and below structural guarantees. In Holger Dell and Jesper Nederlof, editors, 17th International Symposium on Parameterized and Exact Computation, IPEC 2022, September 7-9, 2022, Potsdam, Germany, volume 249 of LIPIcs, pages 19:1-19:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.IPEC.2022.19.
  30. David Kempe, Jon Kleinberg, and Amit Kumar. Connectivity and inference problems for temporal networks. Journal of Computer and System Sciences, 64(4):820-842, 2002. URL: https://doi.org/10.1006/jcss.2002.1829.
  31. William Ogilvy Kermack and Anderson G. McKendrick. A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 115(772):700-721, 192o7. URL: https://doi.org/10.1098/rspa.1927.0118.
  32. Nina Klobas, George B. Mertzios, Hendrik Molter, Rolf Niedermeier, and Philipp Zschoche. Interference-free walks in time: Temporally disjoint paths. In Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI), pages 4090-4096. International Joint Conferences on Artificial Intelligence Organization, 2021. URL: https://doi.org/10.24963/ijcai.2021/563.
  33. Meena Mahajan and Venkatesh Raman. Parameterizing above guaranteed values: Maxsat and maxcut. Journal of Algorithms, 31(2):335-354, 1999. URL: https://doi.org/10.1006/jagm.1998.0996.
  34. Meena Mahajan, Venkatesh Raman, and Somnath Sikdar. Parameterizing above or below guaranteed values. Journal of Computer and System Sciences, 75(2):137-153, 2009. URL: https://doi.org/10.1016/j.jcss.2008.08.004.
  35. George B. Mertzios, Othon Michail, and Paul G. Spirakis. Temporal network optimization subject to connectivity constraints. Algorithmica, 81(4):1416-1449, 2019. URL: https://doi.org/10.1007/s00453-018-0478-6.
  36. Othon Michail and Paul G. Spirakis. Traveling salesman problems in temporal graphs. Theoretical Computer Science, 634:1-23, 2016. URL: https://doi.org/10.1016/j.tcs.2016.04.006.
  37. Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, 2005. URL: https://doi.org/10.1017/CBO9780511813603.
  38. Hendrik Molter, Malte Renken, and Philipp Zschoche. Temporal reachability minimization: Delaying vs. deleting. In Proceedings of the 46th International Symposium on Mathematical Foundations of Computer Science (MFCS), volume 202 of Leibniz International Proceedings in Informatics, pages 76:1-76:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.MFCS.2021.76.
  39. Mark E J Newman. Networks. Oxford University Press, 2018. Google Scholar
  40. Raj Kumar Pan and Jari Saramäki. Path lengths, correlations, and centrality in temporal networks. Physical Review E, 84(1):016105, 2011. URL: https://doi.org/10.1103/PhysRevE.84.016105.
  41. Suhas Thejaswi, Juho Lauri, and Aristides Gionis. Restless reachability problems in temporal graphs. CoRR, abs/2010.08423, 2020. Google Scholar
  42. Huanhuan Wu, James Cheng, Yiping Ke, Silu Huang, Yuzhen Huang, and Hejun Wu. Efficient algorithms for temporal path computation. IEEE Transactions on Knowledge and Data Engineering, 28(11):2927-2942, 2016. URL: https://doi.org/10.1109/TKDE.2016.2594065.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail