Computer Science > Logic in Computer Science
[Submitted on 28 Mar 2012]
Title:A Formalization of the Theorem of Existence of First-Order Most General Unifiers
View PDFAbstract:This work presents a formalization of the theorem of existence of most general unifiers in first-order signatures in the higher-order proof assistant PVS. The distinguishing feature of this formalization is that it remains close to the textbook proofs that are based on proving the correctness of the well-known Robinson's first-order unification algorithm. The formalization was applied inside a PVS development for term rewriting systems that provides a complete formalization of the Knuth-Bendix Critical Pair theorem, among other relevant theorems of the theory of rewriting. In addition, the formalization methodology has been proved of practical use in order to verify the correctness of unification algorithms in the style of the original Robinson's unification algorithm.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Wed, 28 Mar 2012 05:06:30 UTC (22 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.