Mathematics > Category Theory
[Submitted on 17 Apr 2020 (v1), last revised 30 Dec 2021 (this version, v3)]
Title:*-Autonomous Envelopes and Conservativity
View PDFAbstract:We prove 2-categorical conservativity for any {0,T}-free fragment of MALL over its corresponding intuitionistic version: that is, that the universal map from a closed symmetric monoidal category to the *-autonomous category that it freely generates is fully faithful, and similarly for other doctrines. This implies that linear logics and graphical calculi for *-autonomous categories can also be interpreted canonically in closed symmetric monoidal categories.
In particular, every closed symmetric monoidal category can be fully embedded in a *-autonomous category, preserving both tensor products and internal-homs. In fact, we prove this directly first with a Yoneda-style embedding (an enhanced "Hyland envelope" that can be regarded as a polycategorical form of Day convolution), and deduce 2-conservativity afterwards from Hyland-Schalk double gluing and a technique of Lafont. The same is true for other fragments of *-autonomous structure, such as linear distributivity, and the embedding can be enhanced to preserve any desired family of nonempty limits and colimits.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Fri, 17 Apr 2020 23:27:07 UTC (32 KB)
[v2] Thu, 4 Jun 2020 18:24:50 UTC (34 KB)
[v3] Thu, 30 Dec 2021 08:38:48 UTC (40 KB)
Current browse context:
math.CT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.