1 [24] |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{2, \overline{\mathbf{r}}_1} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{3, \overline{\mathbf{r}}_6} , \mathfrak{R}_{4, \overline{\mathbf{r}}_7} , \mathfrak{R}_{4, \overline{\mathbf{r}}_8} , \mathfrak{R}_{2, \overline{\mathbf{r}}_9} , \mathfrak{R}_{1, \overline{\mathbf{r}}_{11}} \right) $ |
$ \alpha_{23}= A , \alpha_{32}= A , \beta_{5}= A^{-1} $ |
$ \{0, 0, 0, 0, 0, 0, 0, 0\} $ |
2 [24] |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{2, \overline{\mathbf{r}}_1} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{3, \overline{\mathbf{r}}_6} , \mathfrak{R}_{4, \overline{\mathbf{r}}_7} , \mathfrak{R}_{4, \overline{\mathbf{r}}_8} , \mathfrak{R}_{2, \overline{\mathbf{r}}_9} , \mathfrak{R}_{1, \overline{\mathbf{r}}_{11}} \right) $ |
$ \alpha_{23}= A^{-1} , \alpha_{32}= A^{-1} , \beta_{5}= A $ |
$ \{0, 0, 0, 0, 0, 0, 0, 0\} $ |
3 [24] |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{2, \overline{\mathbf{r}}_1} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{3, \overline{\mathbf{r}}_6} , \mathfrak{R}_{4, \overline{\mathbf{r}}_7} , \mathfrak{R}_{4, \overline{\mathbf{r}}_8} , \mathfrak{R}_{2, \overline{\mathbf{r}}_9} , \mathfrak{R}_{1, \overline{\mathbf{r}}_{11}} \right) $ |
$ \alpha_{23}= A^{-1} , \alpha_{41}= A , \beta_{7}= A $ |
$ \{0, 0, 0, 0, 1, 0, 0, 0\} $ |
4 [24] |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{2, \overline{\mathbf{r}}_1} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{3, \overline{\mathbf{r}}_6} , \mathfrak{R}_{4, \overline{\mathbf{r}}_7} , \mathfrak{R}_{4, \overline{\mathbf{r}}_8} , \mathfrak{R}_{2, \overline{\mathbf{r}}_9} , \mathfrak{R}_{1, \overline{\mathbf{r}}_{11}} \right) $ |
$ \alpha_{23}= A , \alpha_{41}= A^{-1} , \beta_{7}= A^{-1} $ |
$ \{0, 0, 0, 0, 1, 0, 0, 0\} $ |
5 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{2, \overline{\mathbf{r}}_1} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{3, \overline{\mathbf{r}}_6} , \mathfrak{R}_{4, \overline{\mathbf{r}}_7} , \mathfrak{R}_{4, \overline{\mathbf{r}}_8} , \mathfrak{R}_{2, \overline{\mathbf{r}}_9} , \mathfrak{R}_{1, \overline{\mathbf{r}}_{11}} \right) $ |
$ \alpha_{32}= A^{-1} , \beta_{3}= A , \alpha_{64}= A $ |
$ \{0, 0, 0, 0, 0, 0, 1, 0\} $ |
6 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{2, \overline{\mathbf{r}}_1} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{3, \overline{\mathbf{r}}_6} , \mathfrak{R}_{4, \overline{\mathbf{r}}_7} , \mathfrak{R}_{4, \overline{\mathbf{r}}_8} , \mathfrak{R}_{2, \overline{\mathbf{r}}_9} , \mathfrak{R}_{1, \overline{\mathbf{r}}_{11}} \right) $ |
$ \alpha_{32}= A , \beta_{3}= A^{-1} , \alpha_{64}= A^{-1} $ |
$ \{0, 0, 0, 0, 0, 0, 1, 0\} $ |
7 [24] |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{2, \overline{\mathbf{r}}_1} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{3, \overline{\mathbf{r}}_6} , \mathfrak{R}_{4, \overline{\mathbf{r}}_7} , \mathfrak{R}_{4, \overline{\mathbf{r}}_8} , \mathfrak{R}_{2, \overline{\mathbf{r}}_9} , \mathfrak{R}_{1, \overline{\mathbf{r}}_{11}} \right) $ |
$ \alpha_{41}= A , \beta_{4}= A , \alpha_{64}= A $ |
$ \{0, 0, 0, 0, 1, 0, 1, 0\} $ |
8 [24] |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{2, \overline{\mathbf{r}}_1} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{3, \overline{\mathbf{r}}_6} , \mathfrak{R}_{4, \overline{\mathbf{r}}_7} , \mathfrak{R}_{4, \overline{\mathbf{r}}_8} , \mathfrak{R}_{2, \overline{\mathbf{r}}_9} , \mathfrak{R}_{1, \overline{\mathbf{r}}_{11}} \right) $ |
$ \alpha_{41}= A^{-1} , \beta_{4}= A^{-1} , \alpha_{64}= A^{-1} $ |
$ \{0, 0, 0, 0, 0, 0, 1, 0\} $ |
9 [10,24] |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{2, \overline{\mathbf{r}}_1} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{4, \overline{\mathbf{r}}_6} , \mathfrak{R}_{2, \overline{\mathbf{r}}_7} , \mathfrak{R}_{3, \overline{\mathbf{r}}_8} , \mathfrak{R}_{4, \overline{\mathbf{r}}_9} , \mathfrak{R}_{1, \overline{\mathbf{r}}_{10}} \right) $ |
$ \alpha_{23}= A^{-1} , \beta_{4}= A , \beta_{5}= A $ |
$ \{0, 0, 0, 0, 0, 0, 0, 0\} $ |
10 [24] |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{2, \overline{\mathbf{r}}_1} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{4, \overline{\mathbf{r}}_6} , \mathfrak{R}_{2, \overline{\mathbf{r}}_7} , \mathfrak{R}_{3, \overline{\mathbf{r}}_8} , \mathfrak{R}_{4, \overline{\mathbf{r}}_9} , \mathfrak{R}_{1, \overline{\mathbf{r}}_{10}} \right) $ |
$ \alpha_{23}= A , \beta_{4}= A^{-1} , \beta_{5}= A^{-1} $ |
$ \{0, 0, 0, 0, 0, 0, 0, 0\} $ |
11 [10,24] |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{2, \overline{\mathbf{r}}_1} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{4, \overline{\mathbf{r}}_6} , \mathfrak{R}_{2, \overline{\mathbf{r}}_7} , \mathfrak{R}_{3, \overline{\mathbf{r}}_8} , \mathfrak{R}_{4, \overline{\mathbf{r}}_9} , \mathfrak{R}_{1, \overline{\mathbf{r}}_{10}} \right) $ |
$ \beta_{3}= A , \alpha_{54}= A , \beta_{5}= A $ |
$ \{0, 0, 0, 0, 0, 1, 0, 0\} $ |
12 [24] |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{2, \overline{\mathbf{r}}_1} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{4, \overline{\mathbf{r}}_6} , \mathfrak{R}_{2, \overline{\mathbf{r}}_7} , \mathfrak{R}_{3, \overline{\mathbf{r}}_8} , \mathfrak{R}_{4, \overline{\mathbf{r}}_9} , \mathfrak{R}_{1, \overline{\mathbf{r}}_{10}} \right) $ |
$ \beta_{3}= A^{-1} , \alpha_{54}= A^{-1} , \beta_{5}= A^{-1} $ |
$ \{0, 0, 0, 0, 0, 1, 0, 0\} $ |
13 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{3, \overline{\mathbf{r}}_1} , \mathfrak{R}_{3, \overline{\mathbf{r}}_2} , \mathfrak{R}_{2,\overline{\mathbf{r_{5}}}}, \mathfrak{R}_{4, \overline{\mathbf{r}}_8} , \mathfrak{R}_{4, \overline{\mathbf{r}}_6} , \mathfrak{R}_{1, \overline{\mathbf{r}}_9} , \mathfrak{R}_{2, \overline{\mathbf{r}}_{10}} \right) $ |
$ \alpha_{23}= A^{-1} , \alpha_{52}= A , \alpha_{64}= A $ |
$ \{0, 0, 0, 0, 1, 0, 0, 0\} $ |
14 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{3, \overline{\mathbf{r}}_1} , \mathfrak{R}_{3, \overline{\mathbf{r}}_2} , \mathfrak{R}_{2,\overline{\mathbf{r_{5}}}}, \mathfrak{R}_{4, \overline{\mathbf{r}}_8} , \mathfrak{R}_{4, \overline{\mathbf{r}}_6} , \mathfrak{R}_{1, \overline{\mathbf{r}}_9} , \mathfrak{R}_{2, \overline{\mathbf{r}}_{10}} \right) $ |
$ \alpha_{23}= A , \alpha_{52}= A^{-1} , \alpha_{64}= A^{-1} $ |
$ \{0, 0, 0, 0, 1, 0, 0, 0\} $ |
15 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{3, \overline{\mathbf{r}}_1} , \mathfrak{R}_{3, \overline{\mathbf{r}}_2} , \mathfrak{R}_{2,\overline{\mathbf{r_{5}}}}, \mathfrak{R}_{4, \overline{\mathbf{r}}_8} , \mathfrak{R}_{4, \overline{\mathbf{r}}_6} , \mathfrak{R}_{1, \overline{\mathbf{r}}_9} , \mathfrak{R}_{2, \overline{\mathbf{r}}_{10}} \right) $ |
$ \alpha_{23}= A , \beta_{5}= A^{-1} , \beta_{6}= A $ |
$ \{0, 0, 0, 0, 0, 0, 0, 0\} $ |
16 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{3, \overline{\mathbf{r}}_1} , \mathfrak{R}_{3, \overline{\mathbf{r}}_2} , \mathfrak{R}_{2,\overline{\mathbf{r_{5}}}}, \mathfrak{R}_{4, \overline{\mathbf{r}}_8} , \mathfrak{R}_{4, \overline{\mathbf{r}}_6} , \mathfrak{R}_{1, \overline{\mathbf{r}}_9} , \mathfrak{R}_{2, \overline{\mathbf{r}}_{10}} \right) $ |
$ \alpha_{23}= A^{-1} , \beta_{5}= A , \beta_{6}= A^{-1} $ |
$ \{0, 0, 0, 0, 0, 0, 0, 0\} $ |
17 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{3, \overline{\mathbf{r}}_1} , \mathfrak{R}_{3, \overline{\mathbf{r}}_2} , \mathfrak{R}_{2,\overline{\mathbf{r_{5}}}}, \mathfrak{R}_{4, \overline{\mathbf{r}}_8} , \mathfrak{R}_{4, \overline{\mathbf{r}}_6} , \mathfrak{R}_{1, \overline{\mathbf{r}}_9} , \mathfrak{R}_{2, \overline{\mathbf{r}}_{10}} \right) $ |
$ \alpha_{33}= A^{-1} , \alpha_{52}= A , \alpha_{64}= A $ |
$ \{0, 0, 0, 0, 1, 1, 1, 0\} $ |
18 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{3, \overline{\mathbf{r}}_1} , \mathfrak{R}_{3, \overline{\mathbf{r}}_2} , \mathfrak{R}_{2,\overline{\mathbf{r_{5}}}}, \mathfrak{R}_{4, \overline{\mathbf{r}}_8} , \mathfrak{R}_{4, \overline{\mathbf{r}}_6} , \mathfrak{R}_{1, \overline{\mathbf{r}}_9} , \mathfrak{R}_{2, \overline{\mathbf{r}}_{10}} \right) $ |
$ \alpha_{33}= A , \alpha_{52}= A^{-1} , \alpha_{64}= A^{-1} $ |
$ \{0, 0, 0, 0, 1, 1, 1, 0\} $ |
19 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{3, \overline{\mathbf{r}}_1} , \mathfrak{R}_{3, \overline{\mathbf{r}}_2} , \mathfrak{R}_{2,\overline{\mathbf{r_{5}}}}, \mathfrak{R}_{4, \overline{\mathbf{r}}_8} , \mathfrak{R}_{4, \overline{\mathbf{r}}_6} , \mathfrak{R}_{1, \overline{\mathbf{r}}_9} , \mathfrak{R}_{2, \overline{\mathbf{r}}_{10}} \right) $ |
$ \beta_{4}= A , \alpha_{64}= A , \beta_{6}= A^{-1} $ |
$ \{0, 0, 0, 0, 0, 0, 1, 0\} $ |
20 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{3, \overline{\mathbf{r}}_1} , \mathfrak{R}_{3, \overline{\mathbf{r}}_2} , \mathfrak{R}_{2,\overline{\mathbf{r_{5}}}}, \mathfrak{R}_{4, \overline{\mathbf{r}}_8} , \mathfrak{R}_{4, \overline{\mathbf{r}}_6} , \mathfrak{R}_{1, \overline{\mathbf{r}}_9} , \mathfrak{R}_{2, \overline{\mathbf{r}}_{10}} \right) $ |
$ \beta_{4}= A^{-1} , \alpha_{64}= A^{-1} , \beta_{6}= A $ |
$ \{0, 0, 0, 0, 0, 0, 1, 0\} $ |
21 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{3, \overline{\mathbf{r}}_1} , \mathfrak{R}_{3, \overline{\mathbf{r}}_2} , \mathfrak{R}_{4, \overline{\mathbf{r}}_6} , \mathfrak{R}_{2, \overline{\mathbf{r}}_8} , \mathfrak{R}_{2, \overline{\mathbf{r}}_5} , \mathfrak{R}_{1, \overline{\mathbf{r}}_9} , \mathfrak{R}_{4, \overline{\mathbf{r}}_{10}} \right) $ |
$ \alpha_{23}= A , \alpha_{54}= A , \alpha_{62}= A $ |
$ \{0, 0, 0, 0, 1, 0, 1, 0\} $ |
22 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{3, \overline{\mathbf{r}}_1} , \mathfrak{R}_{3, \overline{\mathbf{r}}_2} , \mathfrak{R}_{4, \overline{\mathbf{r}}_6} , \mathfrak{R}_{2, \overline{\mathbf{r}}_8} , \mathfrak{R}_{2, \overline{\mathbf{r}}_5} , \mathfrak{R}_{1, \overline{\mathbf{r}}_9} , \mathfrak{R}_{4, \overline{\mathbf{r}}_{10}} \right) $ |
$ \alpha_{23}= A^{-1} , \alpha_{54}= A^{-1} , \alpha_{62}= A^{-1} $ |
$ \{0, 0, 0, 0, 1, 0, 1, 0\} $ |
23 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{3, \overline{\mathbf{r}}_1} , \mathfrak{R}_{3, \overline{\mathbf{r}}_2} , \mathfrak{R}_{4, \overline{\mathbf{r}}_6} , \mathfrak{R}_{2, \overline{\mathbf{r}}_8} , \mathfrak{R}_{2, \overline{\mathbf{r}}_5} , \mathfrak{R}_{1, \overline{\mathbf{r}}_9} , \mathfrak{R}_{4, \overline{\mathbf{r}}_{10}} \right) $ |
$ \alpha_{33}= A , \alpha_{54}= A , \alpha_{62}= A $ |
$ \{0, 0, 0, 1, 1, 0, 0, 0\} $ |
24 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{3, \overline{\mathbf{r}}_1} , \mathfrak{R}_{3, \overline{\mathbf{r}}_2} , \mathfrak{R}_{4, \overline{\mathbf{r}}_6} , \mathfrak{R}_{2, \overline{\mathbf{r}}_8} , \mathfrak{R}_{2, \overline{\mathbf{r}}_5} , \mathfrak{R}_{1, \overline{\mathbf{r}}_9} , \mathfrak{R}_{4, \overline{\mathbf{r}}_{10}} \right) $ |
$ \alpha_{33}= A^{-1} , \alpha_{54}= A^{-1} , \alpha_{62}= A^{-1} $ |
$ \{0, 0, 0, 1, 1, 0, 0, 0\} $ |
25 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{3, \overline{\mathbf{r}}_1} , \mathfrak{R}_{3, \overline{\mathbf{r}}_2} , \mathfrak{R}_{4, \overline{\mathbf{r}}_6} , \mathfrak{R}_{2, \overline{\mathbf{r}}_8} , \mathfrak{R}_{2, \overline{\mathbf{r}}_5} , \mathfrak{R}_{1, \overline{\mathbf{r}}_9} , \mathfrak{R}_{4, \overline{\mathbf{r}}_{10}} \right) $ |
$ \alpha_{33}= A , \beta_{5}= A , \beta_{6}= A^{-1} $ |
$ \{0, 0, 0, 1, 0, 0, 0, 0\} $ |
26 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{3, \overline{\mathbf{r}}_1} , \mathfrak{R}_{3, \overline{\mathbf{r}}_2} , \mathfrak{R}_{4, \overline{\mathbf{r}}_6} , \mathfrak{R}_{2, \overline{\mathbf{r}}_8} , \mathfrak{R}_{2, \overline{\mathbf{r}}_5} , \mathfrak{R}_{1, \overline{\mathbf{r}}_9} , \mathfrak{R}_{4, \overline{\mathbf{r}}_{10}} \right) $ |
$ \alpha_{33}= A^{-1} , \beta_{5}= A^{-1} , \beta_{6}= A $ |
$ \{0, 0, 0, 1, 0, 0, 0, 0\} $ |
27 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{3, \overline{\mathbf{r}}_1} , \mathfrak{R}_{3, \overline{\mathbf{r}}_2} , \mathfrak{R}_{4, \overline{\mathbf{r}}_6} , \mathfrak{R}_{2, \overline{\mathbf{r}}_8} , \mathfrak{R}_{2, \overline{\mathbf{r}}_5} , \mathfrak{R}_{1, \overline{\mathbf{r}}_9} , \mathfrak{R}_{4, \overline{\mathbf{r}}_{10}} \right) $ |
$ \beta_{4}= A , \alpha_{62}= A , \beta_{6}= A^{-1} $ |
$ \{0, 0, 0, 0, 0, 0, 1, 0\} $ |
28 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{3, \overline{\mathbf{r}}_1} , \mathfrak{R}_{3, \overline{\mathbf{r}}_2} , \mathfrak{R}_{4, \overline{\mathbf{r}}_6} , \mathfrak{R}_{2, \overline{\mathbf{r}}_8} , \mathfrak{R}_{2, \overline{\mathbf{r}}_5} , \mathfrak{R}_{1, \overline{\mathbf{r}}_9} , \mathfrak{R}_{4, \overline{\mathbf{r}}_{10}} \right) $ |
$ \beta_{4}= A^{-1} , \alpha_{62}= A^{-1} , \beta_{6}= A $ |
$ \{0, 0, 0, 0, 0, 0, 1, 0\} $ |
29 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{2, \overline{\mathbf{r}}_6} , \mathfrak{R}_{2, \overline{\mathbf{r}}_1} , \mathfrak{R}_{4, \overline{\mathbf{r}}_7} , \mathfrak{R}_{4, \overline{\mathbf{r}}_2} , \mathfrak{R}_{3, \overline{\mathbf{r}}_9} , \mathfrak{R}_{1, \overline{\mathbf{r}}_{11}} \right) $ |
$ \alpha_{23}= A^{-1} , \beta_{3}= A , \beta_{5}= A $ |
$ \{0, 0, 0, 0, 0, 0, 0, 0\} $ |
30 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{2, \overline{\mathbf{r}}_6} , \mathfrak{R}_{2, \overline{\mathbf{r}}_1} , \mathfrak{R}_{4, \overline{\mathbf{r}}_7} , \mathfrak{R}_{4, \overline{\mathbf{r}}_2} , \mathfrak{R}_{3, \overline{\mathbf{r}}_9} , \mathfrak{R}_{1, \overline{\mathbf{r}}_{11}} \right) $ |
$ \alpha_{23}= A , \beta_{3}= A^{-1} , \beta_{5}= A^{-1} $ |
$ \{0, 0, 0, 0, 0, 0, 0, 0\} $ |
31 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{2, \overline{\mathbf{r}}_6} , \mathfrak{R}_{2, \overline{\mathbf{r}}_1} , \mathfrak{R}_{4, \overline{\mathbf{r}}_7} , \mathfrak{R}_{4, \overline{\mathbf{r}}_2} , \mathfrak{R}_{3, \overline{\mathbf{r}}_9} , \mathfrak{R}_{1, \overline{\mathbf{r}}_{11}} \right) $ |
$ \beta_{2}= A , \beta_{3}= A , \alpha_{64}= A $ |
$ \{0, 0, 0, 0, 0, 0, 1, 0\} $ |
32 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{2, \overline{\mathbf{r}}_6} , \mathfrak{R}_{2, \overline{\mathbf{r}}_1} , \mathfrak{R}_{4, \overline{\mathbf{r}}_7} , \mathfrak{R}_{4, \overline{\mathbf{r}}_2} , \mathfrak{R}_{3, \overline{\mathbf{r}}_9} , \mathfrak{R}_{1, \overline{\mathbf{r}}_{11}} \right) $ |
$ \beta_{2}= A^{-1} , \beta_{3}= A^{-1} , \alpha_{64}= A^{-1} $ |
$ \{0, 0, 0, 0, 0, 0, 1, 0\} $ |
33 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{2, \overline{\mathbf{r}}_6} , \mathfrak{R}_{2, \overline{\mathbf{r}}_1} , \mathfrak{R}_{4, \overline{\mathbf{r}}_7} , \mathfrak{R}_{4, \overline{\mathbf{r}}_2} , \mathfrak{R}_{3, \overline{\mathbf{r}}_9} , \mathfrak{R}_{1, \overline{\mathbf{r}}_{11}} \right) $ |
$ \beta_{2}= A , \alpha_{42}= A , \beta_{7}= A $ |
$ \{0, 0, 0, 0, 1, 0, 0, 0\} $ |
34 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{2, \overline{\mathbf{r}}_6} , \mathfrak{R}_{2, \overline{\mathbf{r}}_1} , \mathfrak{R}_{4, \overline{\mathbf{r}}_7} , \mathfrak{R}_{4, \overline{\mathbf{r}}_2} , \mathfrak{R}_{3, \overline{\mathbf{r}}_9} , \mathfrak{R}_{1, \overline{\mathbf{r}}_{11}} \right) $ |
$ \beta_{2}= A^{-1} , \alpha_{42}= A^{-1} , \beta_{7}= A^{-1} $ |
$ \{0, 0, 0, 0, 1, 0, 0, 0\} $ |
35 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{2, \overline{\mathbf{r}}_6} , \mathfrak{R}_{2, \overline{\mathbf{r}}_1} , \mathfrak{R}_{4, \overline{\mathbf{r}}_7} , \mathfrak{R}_{4, \overline{\mathbf{r}}_2} , \mathfrak{R}_{3, \overline{\mathbf{r}}_9} , \mathfrak{R}_{1, \overline{\mathbf{r}}_{11}} \right) $ |
$ \alpha_{31}= A , \beta_{5}= A , \beta_{7}= A $ |
$ \{0, 0, 1, 0, 0, 0, 0, 0\} $ |
36 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{2, \overline{\mathbf{r}}_6} , \mathfrak{R}_{2, \overline{\mathbf{r}}_1} , \mathfrak{R}_{4, \overline{\mathbf{r}}_7} , \mathfrak{R}_{4, \overline{\mathbf{r}}_2} , \mathfrak{R}_{3, \overline{\mathbf{r}}_9} , \mathfrak{R}_{1, \overline{\mathbf{r}}_{11}} \right) $ |
$ \alpha_{31}= A^{-1} , \beta_{5}= A^{-1} , \beta_{7}= A^{-1} $ |
$ \{0, 0, 1, 0, 0, 0, 0, 0\} $ |
37 |
$ \left(\mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{2, \overline{\mathbf{r}}_6} , \mathfrak{R}_{3, \overline{\mathbf{r}}_7} , \mathfrak{R}_{4, \overline{\mathbf{r}}_8} , \mathfrak{R}_{4,\overline{\mathbf{r_{1}}}} , \mathfrak{R}_{1, \overline{\mathbf{r}}_9} , \mathfrak{R}_{3, \overline{\mathbf{r}}_{11}} \right) $ |
$ \alpha_{23}= A , \alpha_{31}= A^{-1} , \alpha_{64}= A $ |
$ \{0, 0, 0, 0, 0, 0, 1, 0\} $ |
38 |
$ \left(\mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{2, \overline{\mathbf{r}}_6} , \mathfrak{R}_{3, \overline{\mathbf{r}}_7} , \mathfrak{R}_{4, \overline{\mathbf{r}}_8} , \mathfrak{R}_{4,\overline{\mathbf{r_{1}}}} , \mathfrak{R}_{1, \overline{\mathbf{r}}_9} , \mathfrak{R}_{3, \overline{\mathbf{r}}_{11}} \right) $ |
$ \alpha_{23}= A^{-1} , \alpha_{31}= A , \alpha_{64}= A^{-1} $ |
$ \{0, 0, 0, 0, 0, 0, 1, 0\} $ |
39 |
$ \left(\mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{2, \overline{\mathbf{r}}_6} , \mathfrak{R}_{3, \overline{\mathbf{r}}_7} , \mathfrak{R}_{4, \overline{\mathbf{r}}_8} , \mathfrak{R}_{4,\overline{\mathbf{r_{1}}}} , \mathfrak{R}_{1, \overline{\mathbf{r}}_9} , \mathfrak{R}_{3, \overline{\mathbf{r}}_{11}} \right) $ |
$ \beta_{2}= A , \alpha_{31}= A , \beta_{5}= A^{-1} $ |
$ \{0, 0, 0, 0, 0, 0, 0, 0\} $ |
40 |
$ \left(\mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{2, \overline{\mathbf{r}}_6} , \mathfrak{R}_{3, \overline{\mathbf{r}}_7} , \mathfrak{R}_{4, \overline{\mathbf{r}}_8} , \mathfrak{R}_{4,\overline{\mathbf{r_{1}}}} , \mathfrak{R}_{1, \overline{\mathbf{r}}_9} , \mathfrak{R}_{3, \overline{\mathbf{r}}_{11}} \right) $ |
$ \beta_{2}= A^{-1} , \alpha_{31}= A^{-1} , \beta_{5}= A $ |
$ \{0, 0, 0, 0, 0, 0, 0, 0\} $ |
41 |
$ \left(\mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{2, \overline{\mathbf{r}}_6} , \mathfrak{R}_{3, \overline{\mathbf{r}}_7} , \mathfrak{R}_{4, \overline{\mathbf{r}}_8} , \mathfrak{R}_{4,\overline{\mathbf{r_{1}}}} , \mathfrak{R}_{1, \overline{\mathbf{r}}_9} , \mathfrak{R}_{3, \overline{\mathbf{r}}_{11}} \right) $ |
$ \beta_{2}= A^{-1} , \alpha_{53}= A , \beta_{7}= A $ |
$ \{0, 0, 0, 0, 1, 0, 0, 0\} $ |
42 |
$ \left(\mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{2, \overline{\mathbf{r}}_6} , \mathfrak{R}_{3, \overline{\mathbf{r}}_7} , \mathfrak{R}_{4, \overline{\mathbf{r}}_8} , \mathfrak{R}_{4,\overline{\mathbf{r_{1}}}} , \mathfrak{R}_{1, \overline{\mathbf{r}}_9} , \mathfrak{R}_{3, \overline{\mathbf{r}}_{11}} \right) $ |
$ \beta_{2}= A , \alpha_{53}= A^{-1} , \beta_{7}= A^{-1} $ |
$ \{0, 0, 0, 0, 1, 0, 0, 0\} $ |
43 |
$ \left(\mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{2, \overline{\mathbf{r}}_6} , \mathfrak{R}_{3, \overline{\mathbf{r}}_7} , \mathfrak{R}_{4, \overline{\mathbf{r}}_8} , \mathfrak{R}_{4,\overline{\mathbf{r_{1}}}} , \mathfrak{R}_{1, \overline{\mathbf{r}}_9} , \mathfrak{R}_{3, \overline{\mathbf{r}}_{11}} \right) $ |
$ \alpha_{31}= A^{-1} , \alpha_{53}= A , \alpha_{64}= A $ |
$ \{0, 0, 1, 0, 1, 0, 1, 0\} $ |
44 |
$ \left(\mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{2, \overline{\mathbf{r}}_6} , \mathfrak{R}_{3, \overline{\mathbf{r}}_7} , \mathfrak{R}_{4, \overline{\mathbf{r}}_8} , \mathfrak{R}_{4,\overline{\mathbf{r_{1}}}} , \mathfrak{R}_{1, \overline{\mathbf{r}}_9} , \mathfrak{R}_{3, \overline{\mathbf{r}}_{11}} \right) $ |
$ \alpha_{31}= A , \alpha_{53}= A^{-1} , \alpha_{64}= A^{-1} $ |
$ \{0, 0, 1, 0, 1, 0, 1, 0\} $ |
45 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{4, \overline{\mathbf{r}}_6} , \mathfrak{R}_{2, \overline{\mathbf{r}}_7} , \mathfrak{R}_{3, \overline{\mathbf{r}}_8} , \mathfrak{R}_{3, \overline{\mathbf{r}}_1} , \mathfrak{R}_{4, \overline{\mathbf{r}}_9} , \mathfrak{R}_{1, \overline{\mathbf{r}}_{11}} \right) $ |
$ \alpha_{23}= A^{-1} , \alpha_{31}= A , \alpha_{44}= A $ |
$ \{0, 0, 1, 0, 0, 0, 0, 0\} $ |
46 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{4, \overline{\mathbf{r}}_6} , \mathfrak{R}_{2, \overline{\mathbf{r}}_7} , \mathfrak{R}_{3, \overline{\mathbf{r}}_8} , \mathfrak{R}_{3, \overline{\mathbf{r}}_1} , \mathfrak{R}_{4, \overline{\mathbf{r}}_9} , \mathfrak{R}_{1, \overline{\mathbf{r}}_{11}} \right) $ |
$ \alpha_{23}= A , \alpha_{31}= A^{-1} , \alpha_{44}= A^{-1} $ |
$ \{0, 0, 1, 0, 0, 0, 0, 0\} $ |
47 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{4, \overline{\mathbf{r}}_6} , \mathfrak{R}_{2, \overline{\mathbf{r}}_7} , \mathfrak{R}_{3, \overline{\mathbf{r}}_8} , \mathfrak{R}_{3, \overline{\mathbf{r}}_1} , \mathfrak{R}_{4, \overline{\mathbf{r}}_9} , \mathfrak{R}_{1, \overline{\mathbf{r}}_{11}} \right) $ |
$ \alpha_{23}= A , \beta_{3}= A^{-1} , \beta_{7}= A $ |
$ \{0, 0, 0, 0, 0, 0, 0, 0\} $ |
48 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{4, \overline{\mathbf{r}}_6} , \mathfrak{R}_{2, \overline{\mathbf{r}}_7} , \mathfrak{R}_{3, \overline{\mathbf{r}}_8} , \mathfrak{R}_{3, \overline{\mathbf{r}}_1} , \mathfrak{R}_{4, \overline{\mathbf{r}}_9} , \mathfrak{R}_{1, \overline{\mathbf{r}}_{11}} \right) $ |
$ \alpha_{23}= A^{-1} , \beta_{3}= A , \beta_{7}= A^{-1} $ |
$ \{0, 0, 0, 0, 0, 0, 0, 0\} $ |
49 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{4, \overline{\mathbf{r}}_6} , \mathfrak{R}_{2, \overline{\mathbf{r}}_7} , \mathfrak{R}_{3, \overline{\mathbf{r}}_8} , \mathfrak{R}_{3, \overline{\mathbf{r}}_1} , \mathfrak{R}_{4, \overline{\mathbf{r}}_9} , \mathfrak{R}_{1, \overline{\mathbf{r}}_{11}} \right) $ |
$ \beta_{2}= A , \alpha_{44}= A , \beta_{7}= A^{-1} $ |
$ \{0, 0, 0, 1, 0, 0, 0, 0\} $ |
50 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{4, \overline{\mathbf{r}}_6} , \mathfrak{R}_{2, \overline{\mathbf{r}}_7} , \mathfrak{R}_{3, \overline{\mathbf{r}}_8} , \mathfrak{R}_{3, \overline{\mathbf{r}}_1} , \mathfrak{R}_{4, \overline{\mathbf{r}}_9} , \mathfrak{R}_{1, \overline{\mathbf{r}}_{11}} \right) $ |
$ \beta_{2}= A^{-1} , \alpha_{44}= A^{-1} , \beta_{7}= A $ |
$ \{0, 0, 0, 1, 0, 0, 0, 0\} $ |
51 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{4, \overline{\mathbf{r}}_6} , \mathfrak{R}_{2, \overline{\mathbf{r}}_7} , \mathfrak{R}_{3, \overline{\mathbf{r}}_8} , \mathfrak{R}_{3, \overline{\mathbf{r}}_1} , \mathfrak{R}_{4, \overline{\mathbf{r}}_9} , \mathfrak{R}_{1, \overline{\mathbf{r}}_{11}} \right) $ |
$ \alpha_{31}= A , \alpha_{44}= A , \alpha_{63}= A^{-1} $ |
$ \{0, 0, 1, 1, 0, 0, 1, 0\} $ |
52 |
$ \left( \mathfrak{R}_{3, \overline{\mathbf{r}}_4} , \mathfrak{R}_{1, \overline{\mathbf{r}}_5} , \mathfrak{R}_{4, \overline{\mathbf{r}}_6} , \mathfrak{R}_{2, \overline{\mathbf{r}}_7} , \mathfrak{R}_{3, \overline{\mathbf{r}}_8} , \mathfrak{R}_{3, \overline{\mathbf{r}}_1} , \mathfrak{R}_{4, \overline{\mathbf{r}}_9} , \mathfrak{R}_{1, \overline{\mathbf{r}}_{11}} \right) $ |
$ \alpha_{31}= A^{-1} , \alpha_{44}= A^{-1} , \alpha_{63}= A $ |
$ \{0, 0, 1, 1, 0, 0, 1, 0\} $ |