\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The geometric structure of relative one-weight codes

Abstract / Introduction Related Papers Cited by
  • The geometric structure of any relative one-weight code is determined, and by using this geometric structure, the support weight distribution of subcodes of any relative one-weight code is presented. An application of relative one-weight codes to the wire-tap channel of type II with multiple users is given, and certain kinds of relative one-weight codes all of whose nonzero codewords are minimal are determined.
    Mathematics Subject Classification: Primary: 94B05; Secondary: 94B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Ashikhmin and A. Barg, Minimal vectors in linear codes, IEEE Trans. Inf. Theory, 44 (1998), 2010-2017.doi: 10.1109/18.705584.

    [2]

    W. D. Chen and T. Kløve, The weight hierarchies of q-ary codes of dimension 4, IEEE Trans. Inf. Theory, 42 (1996), 2265-2272.doi: 10.1109/18.556621.

    [3]

    Z. H. Liu and W. D. Chen, Notes on the value function, Des. Codes Crypt., 54 (2010), 11-19.doi: 10.1007/s10623-009-9305-z.

    [4]

    Z. H. Liu, W. D. Chen, Z. M. Sun and X. Y. Zeng, Further results on support weights of certain subcodes, Des. Codes Crypt., 61 (2011), 119-129.doi: 10.1007/s10623-010-9442-4.

    [5]

    Z. H. Liu and X. W. Wu, On relative constant-weight codes, Des. Codes Crypt., 75 (2015), 127-144.doi: 10.1007/s10623-013-9896-2.

    [6]

    Y. Luo, C. Mitrpant, A. J. H. Vinck and K. Chen, Some new characters on the wire-tap channel of type II, IEEE Trans. Inf. Theory, 51 (2005), 1222-1229.doi: 10.1109/TIT.2004.842763.

    [7]

    F. J. MacWilliams, N. J. A. Sloane, The Theory of Error Correcting Codes, North Holland, Amsterdam, 1977.

    [8]

    V. K. Wei, Generalized Hamming weight for linear codes, IEEE Trans. Inf. Theory, 37 (1991), 1412-1418.doi: 10.1109/18.133259.

    [9]

    J. A. Wood, Relative one-weight linear codes, Des. Codes Crypt., 72 (2014), 331-344.doi: 10.1007/s10623-012-9769-0.

    [10]

    J. Yuan and C. Ding, Secret sharing schemes from three classes of linear codes, IEEE Trans. Inf. Theory, 52 (2006), 206-212.doi: 10.1109/TIT.2005.860412.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(217) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return