\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Partitioning CCZ classes into EA classes

Abstract / Introduction Related Papers Cited by
  • EA equivalence classes and the coarser CCZ equivalence classes of functions over $GF(p^n)$ each preserve measures of nonlinearity desirable in cryptographic functions. We identify very precisely the condition on a linear permutation defining a CCZ isomorphism between functions which ensures that the CCZ isomorphism can be rewritten as EA isomorphism. We introduce new algebraic invariants $n(f)$ of the EA isomorphism class of $f$ and $s(f)$ of the CCZ isomorphism class of $f$, with $n(f) < s(f)$, and relate them to the differential uniformity of $f$. We formulate three questions about partitioning CCZ classes into EA classes and relate these to a conjecture of Edel's about quadratic APN functions.
    Mathematics Subject Classification: Primary: 94A60; Secondary: 05B10, 20K35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    B. Aslan, M. T. Sakalli and E. Bulus, Classifying 8-bit to 8-bit S-boxes based on power mappings from the point of DDT and LAT distributions, in "Proc. WAIFI 2008'' (eds. J. von zur Gathen), Springer, Berlin, (2008), 123-133.

    [2]

    C. Bracken, E. Byrne, G. McGuire and G. Nebe, On the equivalence of quadratic APN functions, Des. Codes Cryptogr., 61 (2011), 261-272.doi: 10.1007/s10623-010-9475-8.

    [3]

    M. Brinkmann and G. Leander, On the classification of APN functions up to dimension 5, Des. Codes Cryptogr., 49 (2008), 273-288.doi: 10.1007/s10623-008-9194-6.

    [4]

    K. A. Browning, J. F. Dillon, R. E. Kibler and M. T. McQuistan, APN polynomials and related codes, J. Comb. Inf. Syst. Sci., 34 (2009), 135-159.

    [5]

    L. Budaghyan, C. Carlet and A. Pott, New classes of almost bent and almost perfect nonlinear polynomials, IEEE Trans. Inform. Theory, 52 (2006), 1141-1152.doi: 10.1109/TIT.2005.864481.

    [6]

    C. Carlet, P. Charpin and V. Zinoviev, Codes, bent functions and permutations suitable for DES-like cryptosystems, Des. Codes Cryptogr., 15 (1998), 125-156.doi: 10.1023/A:1008344232130.

    [7]

    R. East, "Nonlinear Functions over Finite Fields,'' Honours thesis, RMIT University, 2008, (unpublished).

    [8]

    Y. Edel, APN functions and dual hyperovals, in "NATO Advanced Research Workshop,'' Veliko Tarnovo, Bulgaria, (2008).

    [9]

    Y. Edel, Personal correspondence, March 2010.

    [10]

    Y. Edel, G. Kyureghyan and A. Pott, A new APN function which is not equivalent to a power mapping, IEEE Trans. Inform. Theory, 52 (2006), 744-747.doi: 10.1109/TIT.2005.862128.

    [11]

    Y. Edel and A. Pott, A new almost perfect nonlinear function which is not quadratic, Adv. Math. Commun., 3 (2009), 59-81.doi: 10.3934/amc.2009.3.59.

    [12]

    K. J. Horadam, "Hadamard Matrices and their Applications,'' Princeton University Press, Princeton, 2007.

    [13]

    K. J. Horadam, Relative difference sets, graphs and inequivalence of functions between groups, J. Combin. Des., 18 (2010), 260-273.

    [14]

    K. J. Horadam, Equivalence classes of functions between finite groups, J. Algebr. Comb., (2012), to appear, DOI 10.1007/s10801-011-0310-8.doi: 10.1007/s10801-011-0310-8.

    [15]

    K. J. Horadam and D. G. Farmer, Bundles, presemifields and nonlinear functions, Des. Codes Cryptogr., 49 (2008), 79-94.doi: 10.1007/s10623-008-9172-z.

    [16]

    G. M. Kyureghyan and A. Pott, Some theorems on planar mappings, in "Proc. WAIFI 2008'' (eds. J. von zur Gathen et al), Springer, Berlin, (2008), 117-122.

    [17]

    K. Nyberg, Differentially uniform mappings for cryptography, in "EUROCRYPT-93,'' Springer, New York, (1994), 55-64.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(129) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return