SIMULATING OF FUTURE CLIMATE CONDITIONS ON THE EFFECT OF IRRIGATION ON SUGARCANE YIELD IN SOUTHERN BRAZIL

Autores

  • Eduardo de Castro Mattos Escola Superior de Agricultura "Luiz de Queiroz" - ESALQ/USP
  • Thaís Cattarine Henriques Tomé Escola Superior de Agricultura "Luiz de Queiroz" - ESALQ/USP
  • Rafael Braghieri Menillo Escola Superior de Agricultura "Luiz de Queiroz" - ESALQ/USP
  • Fábio Ricardo Marin Escola Superior de Agricultura "Luiz de Queiroz" - ESALQ/USP

DOI:

https://doi.org/10.37856/bja.v96i2.4250

Resumo

The objective of this study was to evaluate the technical and economic feasibility of installing central pivot irrigation systems in current days (Scenario A) and in two future scenarios, one with a 10% increase in rainfall (Scenario B1) and the other with 10% reduction in rainfall (Scenario B2). For both future scenarios, an increase of 2ºC in the global temperature and the concentration of atmospheric carbon dioxide (CO2) increasing to 528 ppm (parts per million) were considered. For the study, the recommendation for an area of clayey soil and with the sugarcane cycle was evaluated on three different planting dates: May 15, August 15 and November 15. The DSSAT/CANEGRO model was used, and under the current conditions, the simulations indicated greater yield for planting in May, both for rainfed and irrigated. For scenario B1, there was an increase in yield of 22% for rainfed and 33% for irrigated. In addition, irrigation provided yield gains in the two future scenarios of 13% and 14% for B1 and B2, respectively. Based on the results obtained, central pivot irrigation proved economically viable in the simulated climatic conditions. Therefore, the increase in sugarcane production provided by irrigation in agronomic management was sufficient to make investment in the region in question feasible. It is suggested to repeat the study in other regions, since the existing synergy between the factors that define agricultural yield can change the decision making about the implantation of irrigation systems in the production environment.

Biografia do Autor

Eduardo de Castro Mattos, Escola Superior de Agricultura "Luiz de Queiroz" - ESALQ/USP

Engenheiro Agrônomo pela Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ-USP), em 2020. Membro efetivo do grupo de pesquisa GTSBio (Grupo de Tecnologia Sucroenergética e Bioenergia), desde 2016, com liderança em alguns projetos de Iniciação Científica. Atualmente aluno de Doutorado Direto pelo Programa de Bioenergia, com projeto focado em experimentação para produção de mudas de cana-de-açúcar em estufa e campo objetivando aumentar os patamares de produtividade agrícola e de bioenergia com alto grau de inovação tecnológica.

Fábio Ricardo Marin, Escola Superior de Agricultura "Luiz de Queiroz" - ESALQ/USP

Engenheiro Agrônomo pela Escola Superior de Agricultura Luiz de Queiroz da Universidade de São Paulo, em 1998; mestre e doutor em agronomia pela mesma instituição, em 2000 e 2003, respectivamente. Tem pós-doutorado pela Universidade da Flórida (2010-2011) e pela Universidade de Nebraska-Lincoln (2018), Estados Unidos, respectivamente nas áreas de concentração em modelagem de crescimento de plantas e análise de eficiência agrícola. Foi pesquisador da Embrapa entre 2002 e 2013, professor da PUC-Campinas entre 2005 e 2013 e professor da FGV-Agro entre 2008 e 2013. Entre agosto de 2006 e junho de 2013, foi professor visitante em curso de pós-graduação e orientador pontual na ESALQ/USP. Desde agosto de 2013 é professor na área de agrometeorologia e modelagem agrícola e, em 2014, tornou-se professor associado pelo Departamento de Engenharia de Biossistemas da ESALQ/USP. Tem mais de 5500 horas de atuação em ensino universitário, tendo sido homenageado por turmas da PUC e da ESALQ. É bolsista de produtividade do CNPq desde 2010. Publicou mais de 90 artigos científicos e mais de uma dezena de capítulos de livros; visitou 17 países em missões de cooperação científica, proferindo palestras e realizando pesquisas de campo. Desde 2005, coordena projetos em rede, de abrangência nacional, envolvendo amplos grupos de pesquisadores. Tem liderança na captação de recursos e na gestão de grupos de pesquisa; coordena o Sistema Tempocampo da ESALQ, que assessora a mais de 50 empresas brasileiras, notadamente nos setores da soja, do milho e da cana-de-açúcar

Referências

AGUIRRE, L. A. 2000. Introdução à Identificação de Sistemas - Técnicas Lineares e Não-Lineares Aplicadas a Sistemas Reais. [S.l.]: Editora UFMG.

ALLEN, L. H.; JONES, P. H.; JONES, J. W. 1985. Rising atmospheric CO2 and evapotranspiration. Advances in evapotranspiration. St. Joseph: ASAE,. P. 13-27.

CONSECANA - Conselho dos Produtores de Cana-de-açúcar, Açúcar, Ãlcool do Estado de São Paulo, 2006. Manual de instruções CONSECANA. 5.ed. Piracicaba, 111p.

COSTA, R. I. Caracterização da Viabilidade Econômica dos Sistemas de Irrigação da Cultura da Cana-de-Açúcar. [s.l.] Universidade de São Paulo - Escola Superior de Agricultura “Luiz de Queiroz†(ESALQ/USP), 2012.

EMBRAPA SOLOS. Empresa Brasileira de Pesquisa Agropecuária - Embrapa. https: //www.embrapa.br/solos/sibcs/solos-do-brasil, 2020. ISSN Versão 3.104.0. Acesso em: 25 mar. 2021.

EMPRESA de PESQUISA ENERGÉTICA (EPE), 2016ª. O compromisso do Brasil no Combate às Mudanças Climáticas: Produção e Uso de Energia.

FARIAS, C. H. A.; FFERNANDE, P. D.; AZEVEDO, H. M.; DANTAS NETO, J., 2008. Ãndices de crescimento da cana-de-açúcar irrigada e de sequeiro no Estado da Paraíba. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande v.12, n.4, p.356-362.

FUNDAÇÃO GETÚLIO VARGAS (FGV), 2017. Biocombustíveis. Cadernos FGV.

FRIZZONE, J. A.; JÚNIOR, A. S. de A.; SOUZA, J. L. M.; ZOCOLER, J. L. 2005. Planejamento de Irrigação: análise de decisão de investimento. Embrapa Informação Tecnológica; Brasília, Distrito Federal, Brasil.

GALINDO, A. M., & CARVALHO, M. E. A. (2016). Comparativo de rentabilidade da produção da cana-de-açúcar em sistema de arrendamento e fornecimento em Chavantes/SP. Revista IPecege, 2(3), 7–26. https://doi.org/10.22167/r.ipecege.2016.3.7.

GHANNOUM O., VON CAEMMERER S., ZISKA L.H. & CONROY J.P. (2000)The growth response of C4plants to rising atmospheric CO2partial pressure: a reassessment. Plant, Cell & Environment 23,931–942

HOOGENBOOM, G.; JONES, J. W.; WILKENS, P. W.; PORTE, C. H.; BOOTE, K. J.; HUNT, L. A.; SINGH, U.; LIZASO, J. L.; WHITE, J. W.; URYASEV, O.; OGOSHI, R.; KUO, J.; SHELIA, V.; TSUJI, G. Y., 2014. Decision Support System for Agrotechnology Transfer: version 4.6. University of Hawaii, Honolulu, Hawaii.

INMAN-BAMBER, N.G., 1991. A growth model for sugar-cane based on a simple carbon balance and the CERES-Maize water balance. S. Afr. J. Plant Soil 8, 93–99. http://dx.doi.org/10.1080/02571862.1991.10634587

INMAN-BAMBER, N.G.; SMITH, D.M., 2005. Water relations in sugarcane and response to water deficits. Field Crops Research, Amsterdam, v. 92, p. 185-202.

INMAN-BAMBER, N.G.; BONNETT, G.D.; SMITH, D.M.; THORBURN, P.J. 2005. Sugarcane physiology: integrating from cell to crop to advance sugarcane production. Field Crops Research, v.92, p.115-117.

INSTITUTO AGRONÔMICO de CAMPINAS – IAC, 2020. Solos do Estado de São Saulo. p. 1-3.

JONES, J. W.; HOOGENBOOM, G.; PORTER, C. H.; BOOTE, K. J.; BATCHELOR, W. D.; HUNT, L. A.; WILKENS, P. W.; SINGH, U.; GIJSMAN, A. J.; RITCHIE, J. T., 2003. The DSSAT cropping system model. European Journal of Agronomy, Montpellier, v. 18, n. 3, p. 235- 265.

MADEGOWDA MADHU, JERRY L. HATFIELD. 2014. Interaction of Carbon Dioxide Enrichment and Soil Moisture on Photosynthesis, Transpiration, and Water Use Efficiency of Soybean. Agricultural Sciences.; 5:410-429.

MACHADO, E. C.. Um modelo matemático-fisiológico para simular o acumulo de matéria seca na cultura de cana-de-açúcar (Saccharum SP). 1981. 220f. Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia, Campinas, SP. Disponível em: <http://www.repositorio.unicamp.br/handle/REPOSIP/315126>. Acesso em: 16 jul. 2018.

MARIN, F. R.; JONES, J. W. ; ROYCE, F. ; PELLEGRINO, G. Q. ; ASSAD, Eduardo Delgado ; Barbosa, F.J., 2012. Climate change impacts on sugarcane attainable yield in southern Brazil. Climatic Change, p. 1-2.

MARIN, F. R., 2016. Understanding sugarcane production, biofuels, and market volatility in Brazil--A research perspective. Outlook on Agricrop, v. 45, p. 75-77.

MARIN, F. R. Eficiência de produção da cana-de-açúcar brasileira: estado atual e cenários futuros baseados em simulações multimodelos. Escola Superior de Agricultura “Luiz de Quieroz†- Tese de Livre Docência, n. May, p. 262, 2014.

MARTINÉ, J-F.; SIBAND, P.; BONHOMME, R. Simulation of the Maximum Yield of Sugarcane at Different Altitudes: Effect of Temperature on the Conversion of Radiation into Biomass Agronomie, Paris, v. 19, p. 3-12, 2003.

MORGAN, J. A.; DANIEL, R.; PENDALL, E.; DANA, M.; BLUMENTHAL, B.; KIMBALA, A.; YOLIMA, C. 2011. C4 Grasse Prosper as Carbon Dioxide Eliminates Desiccation Warmed Semi-Arid Grassland, Nature, London, v.476, p.202-205.

NASSIF, D. S. P.; MARIN, F. R.; COSTA, L. G. Evapotranspiration and Transpiration Coupling to the Atmosphere of Sugarcane in Southern Brazil: Scaling Up from Leaf to Fiel. Sugar Tech 1-5. 2013.

OLIVEIRA, E. C. A.; FREIRE, F. J.; OLIVEIRA, A. C.; NETO, D. E. S.; ROCHA, A. T.; CARVALHO, L. A., 2011. Produtividade, eficiência de uso da água e qualidade tecnológica de cana-de-açúcar submetida a diferentes regimes hídricos. Revista Pesquisa Agropecuária Brasileira, Brasília, v. 46, n. 6, p. 617–625.

PAGANI, V. STELLA, T., GUARNERI, T., FINOTO, G., VAN DEN BERG, M., MARIN, F. R., ACUTIS, M., CONFALONIERI, R.. Forecasting sugarcane yields using agro-climatic indicators and Canegro model: A case study in the main production region in Brazil. Agricultural Systems, v. 154, n. November 2016, p. 45–52, 2017.

RAMESH, P. Effect of different levels of drought during the formative phase on growth parameters and its relationship with dry matter accumulation in sugarcane. Journal Agronomy and Crop Science, v.185, p.83-89, 2000.

ROBERTSON, M.J.; MUCHOW, R.C.; DONALDSON, R.A.; INMAN-BAMBER, N.G.; WOOD, A.W. 1999. Estimating the risk associated with drying-off strategies for irrigated sugarcane before harvest. Australian Journal of Agricultural Research, v.50, p.65-77.

SAGE, R.F., 2002. Variation in the k(cat) of Rubisco in C3 and C4 plants and some implications

for photosynthetic performance at high and low temperature. Journal of experimental botany.

:609–620.

SANTOS, M. A L. Irrigação suplementar da cana-de-açúcar (Saccharum spp): um modelo de análise de decisão para o estado de Alagoas, 2005.

SILVA, A.L.C. da; COSTA, W.A.J.M. de. 2004. Varietal variation in growth, physiology and yield of sugarcane under two contrasting water regimes. Tropical Agricultural Research, v.16, p.1-12.

SILVA, M. DE A. et al., 2014. Potencial produtivo da cana-de-açúcar sob irrigação por gotejamento em função de variedades e ciclos. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 18, n. 3, p. 241–249.

SINGELS, A.; JONES, M.; MARIN, F.R.; RUANE, A.; THORBURN, P. Predicting Climate Change Impacts on Sugarcane Production at Sites in Australia, Brazil and South Africa Using the Canegro Model. Sugar Tech 1–9, 2013. doi:10.1007/s12355-013-0274-1.

SINGELS, A., JONES, M., VAN DEN BERG, M., 2008. DSSAT v4. 5-Canegro Sugarcane Plant Module. International Consortium for Sugarcane Modelling (ICSM).

SINGELS, A.; JONES, M.; VAN DER BERG, M., 2008. DSSAT v.4.5 DSSAT/CANEGRO Sugarcane Plant Module. Scientific Documentation. International Consortium for sugarcane Modeling. South African Sugarcane Research Institute, Mount Edgecombe, South Africa, 34p.

SINGELS, A.; BEZUIDENHOUT, C.N. A New Method of Simulating Dry Matter Partitioning in the Canegro Sugarcane Model. Field Crops Research, Amsterdan, v.78 151–164, 2002. http://dx.doi.org/10.1016/S0378-4290(02)00118-1.

SINGH, P.N.; SHUKLA, S.K.; BHATNAGAR, V.K., 2007. Optimizing soil moisture regime to increase water use efficiency of sugarcane (Saccharum spp. Hybrid complex) in subtropical India. Agricultural Water Management, v.90, p.95-100.

SOUZA, A. P. D., GASPAR, M., SILVA, E. A. D., ULIAN, E. C., WACLAWOVSKY, A. J., JR., M. Y. N., SANTOS, R. V. D., TEIXEIRA, M. M., SOUZA, G. M., BUCKERIDGE, M. S.. Elevated CO2 increases photosynthesis , biomass and productivity , and modifies gene expression in sugarcane. p. 1116–1127, 2008.

SOUZA, D. M. G. de; LOBATO, E., 2013. Terra Roxa Estruturada/Nitossolo Vermelho. Disponível em: . Acesso em: 31 mar. 2020.

STOKES, C. J., INMAN-BAMBER, N. G., EVERINGHAM, Y. L. & SEXTON, J., 2016. Measuring and modelling CO2 effects on sugarcane. Environmental modelling & software. 78:68-78.

TAKEI, K.; TAKAHASHI, T.; SUGIYAMA, T.; YAMAYA, T.; SAKAKIBARA, H., 2002. Multiple routes communicating nitrogen availability from roots to shoots: a signal transduction pathway mediated by cytokinin. Journal of Experimental Botany, v.53, p.971-977.

TRENBERTH, K E; JONES, P D; AMBENJE, P; BOJARIU, R; EASTERLING, D; KLEIN TANK, A; PARKER, D; RAHIMZADEH, F; RENWICK, J A; RUSTICUCCI, M; SODEN, B; ZHAI, P. 2007. Observations. Surface and Atmospheric Climate Change. Chapter 3. IPCC Working Group I, National Oceanic and Atmospheric Administration NOAA. DSRC R/AL/8, 325 Broadway, Boulder, CO 80305 (United States), p. 236-336. (ISBN 978-0521-70596-7; TRN: GB07CC229).

VOLPE V., MANZONI S., MARANI M., KATUL G. 2011. Leaf conductance and carbon gain under salt-stressed conditions. J. of GEOPHYSICAL RES; 116, doi: 10.1029/JG001848.

VU J. C. V., ALLEN JR. L. H., 2009a. Growth at elevated CO2 delays the adverse effects of drought stress on leaf photosynthesis of the C4 sugarcane. Journal of Plant Physiology 166(2):107-116.

Downloads

Publicado

2021-08-09

Edição

Seção

Artigos