Spatiotemporal Variations and Socio-Economic Influencing Factors of Soil Erosion at Different Spatial Scales in Key Agricultural Areas of the Qinghai—Tibet Plateau from 2000 to 2022: A Case Study of the Huangshui River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Erosion Estimation
2.3. Classification of Soil Erosion Intensity Grades
2.4. Influencing Factors of Soil Erosion
2.5. Data Processing
3. Results
3.1. The Distribution Characteristics of Soil Erosion Intensity Grades at Different Scales
3.2. Soil Erosion Rates at Different Scales from 2000–2022
3.3. Analysis of Influencing Factors of Soil Erosion Rates at Different Scales
4. Discussion
4.1. Soil Erosion in the Temporal and Spatial Distribution of the Huangshui River Basin
4.2. Analysis of Influencing Factors of Soil Erosion Rate
4.3. Soil Erosion Control Measures Based on Socio-Economic Perspective
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lal, R. Soil Erosion Impact on Agronomic Productivity and Environment Quality. Crit. Rev. Plant Sci. 1998, 17, 319–464. [Google Scholar] [CrossRef]
- Pimentel, D.; Harvey, C.; Resosudarmo, P.; Sinclair, K.; Kurz, D.; McNair, M.; Crist, S.; Shpritz, L.; Fitton, L.; Saffouri, R.; et al. Environmental and Economic Costs of Soil Erosion and Conservation Benefits. Science 1995, 267, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Cheng, Y.; Jian, J.; Jiao, J.; Cheng, C.; Li, J.; Chen, T. Water erosion changes on the Qinghai-Tibet Plateau and its response to climate variability and human activities during 1982–2015. Catena 2023, 29, 107207. [Google Scholar] [CrossRef]
- Jiao, J.; Zou, H.; Jia, Y.; Wang, N. Research progress on the effects of soil erosion on vegetation. Acta Ecol. Sin. 2009, 29, 85–91. [Google Scholar] [CrossRef]
- Panagos, P.; Katsoyiannis, A. Soil erosion modelling: The new challenges as the result of policy developments in Europe. Environ. Res. 2019, 172, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Mu, X.; Wen, Z.; Wang, F.; Gao, P. Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degrad. Dev. 2013, 24, 499–510. [Google Scholar] [CrossRef]
- Wynants, M.; Kelly, C.; Mtei, K.; Munishi, L.; Patrick, A.; Rabinovich, A.; Nasseri, M.; Gilvear, D.; Roberts, N.; Boeckx, P.; et al. Drivers of increased soil erosion in East Africa’s agro-pastoral systems: Changing interactions between the social, economic and natural domains. Reg. Environ. Chang. 2019, 19, 1909–1921. [Google Scholar] [CrossRef]
- Tian, Y.; Li, H.; Wang, P. Socio-economic analysis on soil erosion in Hunan province. Econ. Geogr. 2009, 29, 92–96. [Google Scholar] [CrossRef]
- Zhao, W.; Fu, B.; Lv, Y.; Chen, L. Land Use and Soil Erosion at Multiscale. Prog. Geogr. 2006, 25, 24–33. [Google Scholar] [CrossRef]
- Guo, Z.; Yan, Z.; He, R.; Yang, H.; Ci, H.; Wang, R. Impacts of Land Use Conversion on Soil Erosion in the Urban Agglomeration on the Northern Slopes of the Tianshan Mountains. Land 2024, 13, 550. [Google Scholar] [CrossRef]
- Negese, A. Impacts of Land Use and Land Cover Change on Soil Erosion and Hydrological Responses in Ethiopia. Appl. Environ. Soil Sci. 2021, 6669438. [Google Scholar] [CrossRef]
- Machowski, R.; Rzetala, M.; Rzetala, M.; Solarski, M. Geomorphological and Hydrological Effects of Subsidence and Land use Change in Industrial and Urban Areas. Land Degrad. Dev. 2016, 27, 1740–1752. [Google Scholar] [CrossRef]
- Li, W.; Chen, J.; Zhang, Z. Forest quality-based assessment of the Returning Farmland to Forest Program at the community level in SW China. For. Ecol. Manag. 2020, 461, 117938. [Google Scholar] [CrossRef]
- Li, Z.; Sun, X.; Huang, Z.; Zhang, X.; Wang, Z.; Li, S.; Zheng, W.; Zhai, B. Changes in nutrient balance, environmental effects, and green development after returning farmland to forests: A case study in Ningxia, China. Sci. Total Environ. 2020, 735, 139370. [Google Scholar] [CrossRef]
- Istanbuly, M.; Krása, J.; Jabbarian Amiri, B. How Socio-Economic Drivers Explain Landscape Soil Erosion Regulation Services in Polish Catchments. Int. J. Environ. Res. Public Health 2022, 19, 2372. [Google Scholar] [CrossRef]
- Wang, P.; Lassoie, J.; Morreale, S.; Dong, S. A critical review of socioeconomic and natural factors in ecological degradation on the Qinghai-Tibetan Plateau, China. Rangel J. 2015, 37, 1–9. [Google Scholar] [CrossRef]
- Qiu, J. A sky-high view of the Third Pole: An interview with Tandong Yao and Weiming Fan. Natl. Sci. Rev. 2015, 2, 489–492. [Google Scholar] [CrossRef]
- Chen, T.; Jiao, J.; Wang, H.; Zhao, C.; Lin, H. Progress in Research on Soil Erosion in Qinghai-Tibet Plateau. Acta Pedol. Sin. 2020, 57, 547–564. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, S.; Yang, S. The classification and assessment of freeze-thaw erosion in Tibet. J. Geogr. Sci. 2007, 17, 165–174. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Q.; Shen, Y.; Zhou, N.; Wang, X.; Li, J.; Jia, W. Monitoring of aeolian desertification on the qinghai-tibet plateau from the 1970s to 2015 using landsat images. Sci. Total Environ. 2018, 619–620, 1648–1659. [Google Scholar] [CrossRef]
- Du, M.; Zhao, J.; Yang, J.; Ding, Y.; Liu, W.; Li, G.; Wang, Z.; Zhao, L. Soil Erosion and Spatio-temporal Variations in Huangshui River Basin Based on MODIS and Landsat Data. Bull. Soil Water Conserv. 2022, 3, 131–138. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhao, W.; Jiao, J.; Zhang, L.; Cao, X.; Chen, T.; Li, J.; Zhang, Z. Soil conservation effect of cropland use change in the Yellow River-Huangshui River Valley over the past 20 years. Sci. Soil Water Conserv. 2023, 21, 55–63. [Google Scholar] [CrossRef]
- Kenneth, G.; George, R.; Glenn, A.; Jeffrey, P. RUSLE: Revised universal soil loss equation. J. Soil Water Conserv. 1991, 46, 30–33. [Google Scholar] [CrossRef]
- Zhang, W.; Xie, Y.; Liu, B. Rainfall Erosivity Estimation Using Daily Rainfall Amounts. Sci. Geogr. Sin. 2002, 6, 53–56. [Google Scholar] [CrossRef]
- Williams, J.; Jones, C.; Dyke, P. A Modeling Approach to Determining the Relationship Between Erosion and Soil Productivity. Trans. ASAE 1984, 27, 129–144. [Google Scholar] [CrossRef]
- Fu, S.; Liu, B.; Zhou, G.; Sun, Z.; Zhu, X. Calculation tool of topographic factors. Sci. Soil. Water Conserv. 2015, 13, 105–110. [Google Scholar] [CrossRef]
- Van der Kniff, J.M.F.; Jones, R.J.A.; Montanarella, L. Soil Erosion Risk Assessment in Italy; European Soil Bureau, European Commission: Brussels, Belgium, 1999; p. 52. Available online: https://esdac.jrc.ec.europa.eu/content/soil-erosion-risk-assessment-italy (accessed on 20 April 2024).
- Teng, H.; Liang, Z.; Chen, S.; Liu, Y.; Rossel, R.; Chappell, A.; Yu, W.; Shi, Z. Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models. Sci. Total Environ. 2018, 635, 673–686. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Miao, C.; Gou, J.; Zheng, H.; Zhang, Q.; Guo, X. A new daily gridded precipitation dataset for the Chinese mainland based on gauge observations. Earth Syst. Sci. Data 2023, 15, 3147–3161. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- SL190—2007; Standards for Classification and Gradation of Soil Erosion. Ministry of Water Resources of the People’s Republic of China: Beijing, China, 2008.
- Wang, B.; Zeng, Y.; Li, M.; Chen, D.; Wang, H.; Wang, Y.; Fang, N. Evaluation of the driving effects of socio-economic development on soil erosion from the perspective of prefecture-level. Front. Environ. Sci. 2022, 10, 1066889. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Q.; Zheng, H.; Yang, J.; Xiao, R. Temporal variation of soil and water loss and its social-economic driving forces in Jiangxi Province from 1987 to 1923. Ecol. Sci. 2017, 36, 115–120. [Google Scholar] [CrossRef]
- Hua, L. Soil Erosion Dynamics Induced by Natural and Anthro-Pogenic Forcing and Its Regionalization Application: A Case Study in Hubei Province. Ph.D. Thesis, Huazhong Agricultral University, Wuhan, China, 2013. [Google Scholar] [CrossRef]
- Dong, X. Effects of Grain-for-Green on Soil Quanlity in Huangshui River Basin of Qinghai Province. Bull. Soil Water Conserv. 2011, 31, 45–48. [Google Scholar] [CrossRef]
- Xu, X.; Mo, Y. Analysis on the Rain Storm-Caused Flood Occurred in Huangshui River Basin in July 2010. Bull. Sci. Technol. 2012, 28, 21–23. [Google Scholar] [CrossRef]
- Zhang, X.; Drake, N.; Wainwright, J. Scaling land surface parameters for global-scale soil erosion estimation. Water Resour. Res. 2002, 38, 11–19. [Google Scholar] [CrossRef]
- Karaburun, A. Estimation of C factor for soil erosion modeling using NDVI in Buyukcekmece watershed. Ozean J. Appl. Sci. 2010, 3, 77–85. [Google Scholar]
- Zhao, Y.; Pu, Y.; Lin, H.; Tang, R. Examining Soil Erosion Responses to Grassland Conversation Policy in Three-River Headwaters, China. Sustainability 2021, 13, 2702. [Google Scholar] [CrossRef]
- Zhou, H.; Li, H. Soil erosion risk evaluation using GIS in the Yuanmou County, a dry-hot valley of Yunnan, China. Sci. Cold Arid. Reg. 2009, 1, 249–257. [Google Scholar]
- Luo, B.; Li, J.; Gong, C.; Zhong, S.; Wei, Z. Driving forces and their interactions of soil erosion in soil and water conservation regionalization at the county scale with a high cultivation rate. J. Mt. Sci. 2023, 20, 2502–2518. [Google Scholar] [CrossRef]
- Ning, H.; Liu, Q.; Zhang, S.; Ye, H.; Shen, Q.; Zhang, W.; Li, Z. Simple assessment of farmland soil phosphorus loss risk at county scale with high landscape heterogeneity. Int. J. Agric. Biol. Eng. 2021, 14, 126–134. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, L.; Kang, S.; Ao, Y.; Han, L.; Ma, C. Quantitative Analysis of Factors Influencing Spatial Distribution of Soil Erosion Based on Geo-Detector Model under Diverse Geomorphological Types. Land 2021, 10, 604. [Google Scholar] [CrossRef]
- Yihunie, Y. Review on Dynamics of Soil Erosion and Conservation Efforts in Ethiopia. Asian J. Adv. Res. Rep. 2020, 10, 27–32. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, W.; Zhang, Z. Impacts of Land-Use Changes on Soil Erosion in Water–Wind Crisscross Erosion Region of China. Remote Sens. 2019, 11, 1732. [Google Scholar] [CrossRef]
- Chen, T.; Jiao, J.; Zhang, Z.; Lin, H.; Zhao, C.; Wang, H. Soil quality evaluation of the alluvial fan in the Lhasa River Basin, Qinghai-Tibet Plateau. Catena 2022, 209, 105829. [Google Scholar] [CrossRef]
- Shi, Z.; Cai, C.; Ding, S.; Wang, T.; Chou, T. Soil conservation planning at the small watershed level using RUSLE with GIS: A case study in the Three Gorge Area of China. Catena 2004, 55, 33–48. [Google Scholar] [CrossRef]
- Zhang, J.; Su, Z.; Liu, G. Effects of terracing and agroforestry on soil and water loss in hilly areas of the Sichuan Basin, China. J Mt Sci. 2008, 5, 241–248. [Google Scholar] [CrossRef]
- Sovell, L.; Vondracek, B.; Frost, J.; Mumford, K. Impacts of rotational grazing and riparian buffers on physicochemical and biological characteristics of southeastern Minnesota, USA, streams. Environ. Manag. 2000, 26, 629–641. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Wei, W.; Jiao, J.; Zhang, Z.; Li, J. Machine learning-based identification for the main influencing factors of alluvial fan development in the Lhasa River Basin, Qinghai-Tibet Plateau. J. Geogr. Sci. 2022, 32, 1557–1580. [Google Scholar] [CrossRef]
Soil Erosion Intensity | Slight | Light | Moderate | Intense | Extremely Intense | Severe |
---|---|---|---|---|---|---|
Soil erosion rate (t·ha−1·yr−1) | 0–5 | 5–25 | 25–50 | 50–80 | 80–150 | >150 |
Influencing Factor | Indicator (Unit) | Reference | Data Source |
---|---|---|---|
Socio-economic factors | Population: Total population (1 × 104 person), Population denstiy (person/km2), Number of employees in agriculture (person); Economic: GDP(1 × 104 CNY), Value added of the primary industry (1 × 104 CNY), Value added of the secondary industry (1 × 104 CNY), GDP per capita (CNY/person), General budget expenditure of local finance (1 × 104 CNY) Land use: Cropland area (km2), Forestland area (km2), Grassland area(km2), Impervious land area (km2), Total grain output (t), Total oil seed yield (t), Total meat production (t). | Wang et al., 2022 [32]; Wang et al., 2017 [33]; Hua Li, 2013 [34]. | China Statistical Yearbook (county-level), Xining Statistical Yearbook |
Influencing Factor Indicators | Basin Scale | City Scale | County Scale |
---|---|---|---|
Mean Soil Erosion Rate | |||
Total population | 0.243 | 0.141 | 0.253 ** |
Population density | 0.243 | 0.077 | 0.152 ** |
Number of employees in agriculture | −0.218 | 0.072 | 0.211 ** |
GDP | 0.245 | 0.330 ** | 0.289 ** |
Value added of the primary industry | 0.25 | 0.074 | 0.289 ** |
Value added of the secondary industry | 0.223 | 0.277 ** | 0.268 ** |
GDP per capita | 0.253 | 0.190 * | 0.233 ** |
General budget expenditure of local finance | −0.272 | −0.151 | −0.317 ** |
Total grain output | 0.251 | 0.031 | 0.151 ** |
Total oil seed yield | −0.218 | −0.15 | 0.138 ** |
Total meat production | 0.253 | 0.088 | 0.282 ** |
Cropland area | −0.129 | 0.088 | 0.140 ** |
forestland area | −0.326 | −0.123 | −0.119 * |
Grassland area | −0.056 | −0.312 ** | 0.08 |
Impervious land area | 0.239 | 0.205 * | 0.042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Chen, Y.; Wang, L.; Mei, X.; Wei, W.; Zhao, W.; Ma, X.; Deji, S. Spatiotemporal Variations and Socio-Economic Influencing Factors of Soil Erosion at Different Spatial Scales in Key Agricultural Areas of the Qinghai—Tibet Plateau from 2000 to 2022: A Case Study of the Huangshui River Basin. Water 2025, 17, 88. https://doi.org/10.3390/w17010088
Chen T, Chen Y, Wang L, Mei X, Wei W, Zhao W, Ma X, Deji S. Spatiotemporal Variations and Socio-Economic Influencing Factors of Soil Erosion at Different Spatial Scales in Key Agricultural Areas of the Qinghai—Tibet Plateau from 2000 to 2022: A Case Study of the Huangshui River Basin. Water. 2025; 17(1):88. https://doi.org/10.3390/w17010088
Chicago/Turabian StyleChen, Tongde, Yulan Chen, Lingling Wang, Xingshuai Mei, Wei Wei, Wenting Zhao, Xiaowu Ma, and Sezhen Deji. 2025. "Spatiotemporal Variations and Socio-Economic Influencing Factors of Soil Erosion at Different Spatial Scales in Key Agricultural Areas of the Qinghai—Tibet Plateau from 2000 to 2022: A Case Study of the Huangshui River Basin" Water 17, no. 1: 88. https://doi.org/10.3390/w17010088
APA StyleChen, T., Chen, Y., Wang, L., Mei, X., Wei, W., Zhao, W., Ma, X., & Deji, S. (2025). Spatiotemporal Variations and Socio-Economic Influencing Factors of Soil Erosion at Different Spatial Scales in Key Agricultural Areas of the Qinghai—Tibet Plateau from 2000 to 2022: A Case Study of the Huangshui River Basin. Water, 17(1), 88. https://doi.org/10.3390/w17010088