Occurrence and Fate of Emerging Pollutants in Water Environment and Options for Their Removal
Abstract
:1. Introduction
2. Emerging Pollutants in Water Environment
3. Challenges of Emerging Pollutants
3.1. Sources of Pollution and Fate of EPs in the Environment
3.2. Environmental and Health Risks Associated with Emerging Pollutants
- -
- Evaluation of mixture toxicity, when the results are valid only for that mixture and cannot be extrapolated to other exposure scenarios;
- -
- Evaluation taking into account the components of the mixture, when the results can be interpreted in two ways: by cumulating the toxicities of the components or considering the independent action of each component of the mixture leading to a common toxicological effect.
3.3. Short Overview on the Assessment of Risks Generated by Emerging Pollutants
4. Removal of EPs from the Environment as Solution for Risks Mitigation
4.1. Short Analysis of Processes Applied for EPs’ Removal
4.2. Progresses in Biological Treatments Applied for the Removal of Emerging Pollutants
4.2.1. Removal of EPs in Constructed Wetlands
- -
- CWs configuration: different operating modes (subsurface, surface, vertical or horizontal flows) are generated in CWs and are important for the elimination of EPs from wastewater through highly oxygen-dependent processes [104]. In this context, the planted vegetation (emerged or submerged and fixed or free-floating) demonstrated significant role in EPs removal; however, the role of plants at microcosm scale, in treating effluents containing emerging pollutants in the constructed wetland system is still a topic of debate [108,118].
- -
- Season of the year: efficiencies during summer operation were generally found higher than those resulted during winter, following higher biodegradation kinetics, plant biomass, variations in influent concentration [106,119]. However, a few studies show that the elimination of some personal care products (PCPs) in CWs is not affected by temperature [108]. Therefore, the mechanism by which the season influences the elimination of some EPs and the extent to which this influence occurs requires additional and rigorous studies, especially on the processes that can eliminate EPs, either degradative (biodegradation) or non-degradative (adsorption, absorption by plants).
- -
- Parameters of the influent to be treated: the results obtained by various researchers [102,103] show that CWs can achieve good elimination efficiencies for Biological Oxygen Demand (BOD5) (81.5–95.6%), Chemical Oxygen Demand (COD) (57.2–84.0%) and Total Suspended Solids (TSS) (81.7–96.4%), while the removal of ammonia (17.4–67.0%) and Total Phosphorous (TP) (5.3–84.1%) was variable and much lower. However, these results depend on the type, configuration and scale of CWs operation. A rigorous analysis of literature data on the influence of water composition on treatment efficiency can reveal that there is a large dispersion of results, which requires integrated studies and extensive collaborations among research groups, based on robust experimental programs so as to diminish the contradictions between the results.
- -
- Oxygen availability: experimental studies conducted in different cases have established a positive correlation between the concentration of dissolved oxygen in the CWs wastewater influent and the elimination efficiency of emerging pollutant [108].
4.2.2. Removal of EPs by Membrane Biological Reactors
- -
- Bioreactor operating conditions (organic loading rate, influent water quality and variability, sludge retention time, hydraulic loading rate, pH, temperature, toxicity of EPs);
- -
- Membrane properties (surface morphology and chemistry, pore size and porosity);
- -
- Hydrodynamic conditions: cross flow velocity, shear stress, gas sparging flow rate and bubbles properties, backwashing potential)
- -
- Process performance (membrane flux, pressure drop, effluent quality, economic aspects);
- -
- Biological properties (biomass concentration, distribution of solid particles, presence of polysaccharides, colloidal particles and soluble microbial products)
- -
- Chemical system characteristics (presence of cations and anions)
- -
- Side stream:
- ▪
- The crossflow filtration involves a tangential flow rate, which stimulates the membrane fouling and large energy consumption;
- ▪
- Easy removal and cleaning of membrane.
- -
- Submerged:
- ▪
- Can treat high strength industrial wastewater (pharmaceutical and textile wastewaters) [134];
- ▪
- Membrane fouling can occur being quite difficult to clean.
- -
- External submerged:
- ▪
- The membrane module is submerged in an external compartment;
- ▪
- Shear force of water flow is intense, which reduces membrane fouling.
- -
- Anaerobic dynamic membrane bioreactor:
- ▪
- Low membrane module cost, easy control of membrane fouling;
- ▪
- Low energy consumption, sludge and biogas production.
- -
- Anaerobic electrochemical membrane bioreactor:
- ▪
- A microbial electrolysis cell (MEC) combined with membrane filtration;
- ▪
- Electrically conductive, porous, nickel-based hollow-fiber membranes (Ni-HFMs).
- -
- Anaerobic osmotic membrane bioreactor:
- ▪
- A forward osmosis (FO) membrane;
- ▪
- Salt accumulation and membrane fouling can diminish permeate flux.
4.2.3. Removal of EPs by Biosorption
4.2.4. Hybrid Treatment Schemes
- ▪
- Activated sludge process + membrane separation/filtration systems (reverse osmosis, ultrafiltration) + gamma radiations;
- ▪
- Constructed wetlands coupled with waste stabilization ponds (removal of pharmaceuticals, beta-blockers), or biodegradation, or/and sorption, or/and volatilization, or/and hydrolysis, or/and photodegradation;
- ▪
- Membrane bioreactor (MBR) + membrane separation/filtration systems (reverse osmosis, nanofiltration) (removal of pesticides, pharmaceuticals, beta-blocking drugs);
- ▪
- Membrane bioreactor (MBR) + UV oxidation, or adsorption on activated carbon, or ozonation followed by ultrasounds;
- ▪
- Ozonation + biological activated carbon (drugs: antibiotics, antidepressants, beta blockers, endocrine disrupting chemicals, pesticides);
- ▪
- Flocculants + activated sludge + ultrafiltration (endocrine disrupting chemicals, pesticides, beta blockers);
- ▪
- Ultrafiltration + activated carbon + ultrasounds (antibiotics);
- ▪
- Surface flow constructed wetland (SFCW) + horizontal flow constructed wetland (HFCW) (drugs: beta blockers, stimulants).
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement.
Informed Consent Statement.
Data Availability Statement
Conflicts of Interest
References
- Bunke, D.; Moritz, S.; Brack, W.; Herráez, D.L.; Posthuma, L.; Nuss, M. Developments in society and implications for emerging pollutants in the aquatic environment. Environ. Sci. Eur. 2019, 31, 32. [Google Scholar] [CrossRef] [Green Version]
- Caliman, F.A.; Gavrilescu, M. Pharmaceuticals, personal care products and endocrine disrupting agents in the environment—A review. Clean (Weinh) 2009, 37, 277–303. [Google Scholar] [CrossRef]
- Gavrilescu, M.; Demnerová, K.; Aamand, J.; Agathos, S.; Fava, F. Emerging pollutants in the environment: Present and future challenges in biomonitoring, ecological risks and bioremediation. N Biotechnol. 2015, 32, 147–156. [Google Scholar] [CrossRef]
- Geissen, V.; Mol, H.; Klumpp, E.; Umlauf, G.; Nadal, M.; van der Ploeg, M.; van de Zee, S.E.A.T.M.; Ritsema, C.J. Emerging pollutants in the environment: A challenge for water resource management. Int. Soil Water Conserv. Res. 2015, 3, 57–65. [Google Scholar] [CrossRef]
- Water for People, Water for Life (2003): 3rd World Water Forum in Kyoto, Japan. www.Norman-Network.net.USEPA. 2011. Exposure Factors Handbook 2011 Edition (Final). EPA/600/R-09/052F. USEPA: Washington, DC, USA. Available online: http://www.epa.gov/ncea/efh (accessed on 16 August 2020).
- Stefanakis, A.; Becker, J.A. A review of emerging contaminants in water: Classification, sources, and potential risks in: Impact of water pollution on human health and environmental sustainability. IGI Glob. 2016. [Google Scholar] [CrossRef] [Green Version]
- Zwiener, C.; Frimmel, F.H. ILC-MS analysis in the aquatic environment and in water treatmen-a critical review. Part II. Applications for emerging contaminants and related pollutants, microorganisms and human-acids. Anal. Bioanal. Chem. 2004, 378, 862–874. [Google Scholar] [CrossRef]
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Off. J. Eur. Union 2000, 1–73. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:5c835afb-2ec6-4577-bdf8-756d3d694eeb.0004.02/DOC_1&format=PDF (accessed on 16 August 2020).
- Ferreiro, V.; Gómez-Motos, I.; Lombrana, J.I.; de Luis, A.; Villota, N.; Ros, O.; Etxebarria, N. Contaminants of emerging concern removal in an effluent of wastewater treatment plant under biological and continuous mode ultrafiltration treatment. Water 2020, 12, 725. [Google Scholar] [CrossRef] [Green Version]
- Du, B.; Haddad, S.P.; Scott, W.C.; Chambliss, C.K.; Brooks, B.W. Pharmaceutical bioaccumulation by periphyton and snails in an effluent-dependent stream during an extreme drought. Chemosphere 2015, 119, 927–934. [Google Scholar] [CrossRef]
- Petrie, B.; Barden, R.; Kasprzyk-Hordern, B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015, 72, 3–27. [Google Scholar] [CrossRef]
- Snow, D.D.; Cassada, D.A.; Larsen, M.L.; Mware, N.A.; Li, X.; D’Alessio, M.; Zhang, Y.; Sallach, J.B. Detection, occurrence and fate of emerging contaminants in agricultural environments. Water Environ. Res. 2017, 89, 897–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, M.; Zhang, L.; Lei, J.; Zong, L.; Li, J.; Wu, Z.; Wang, Z. Overview of emerging contaminants and associated human health effects. BioMed Res. Int. 2015, 404796. [Google Scholar] [CrossRef] [Green Version]
- Gogoi, A.; Mazumder, P.; Tyagi, V.K.; Chaminda, T.G.G.; Kyoungjin An, A.; Kumar, M. Occurrence and fate of emerging contaminants in water environment: A review. Groundw. Sustain. Dev. 2018, 6, 169–180. [Google Scholar] [CrossRef]
- Tang, T. Emerging indoor pollutants. Int. J. Hyg. Environ. Health 2020, 224. [Google Scholar] [CrossRef]
- Tang, Y.; Yin, M.; Yang, W.; Li, H.; Zhong, Y.; Mo, L.; Liang, Y.; Ma, X.; Sun, X. Emerging pollutants in water environment: Occurrence, monitoring, fate, and risk assessment. Water Environ. Res. 2019, 91, 984–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, A.R.; Justino, C.; Rocha-Santos, T.; Freitasd, A.C.; Duarte, A.C.; Pereira, R. Review of the ecotoxicological effects of emerging contaminants on soil biota. J. Environ. Sci. Health A 2017. [Google Scholar] [CrossRef]
- Hlavinek, P.; Zizlavska, A. Occurrence and Removal of Emerging Micropollutants from Urban Wastewater. In Water Management and the Environment: Case Studies; Zelenakova, M., Ed.; Springer International Publishing AG: Cham, Switzerland, 2018; pp. 231–254. [Google Scholar] [CrossRef]
- Risk Assessment Guidance for Superfund Volume 1. Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment), EPA/540/R/99/005 Office of Superfund Remediation and Technology Innovation. U.S. Environmental Protection Agency: Washington, DC, USA. Available online: https://www.epa.gov/sites/production/files/2015-09/documents/part_e_final_revision_10-03-07.pdf (accessed on 12 October 2020).
- Contaminants of Emerging Concern including Pharmaceuticals and Personal Care Products. United States Environmental Protection Agency (USEPA): Washington, DC, USA. Available online: https://www.epa.gov/wqc/contaminants-emerging-concern-including-pharmaceuticals-and-personal-care-products (accessed on 12 October 2020).
- Rivera-Utrilla, J.; Sánchez-Polo, M.; Ferro-García, M.Á.; Prados-Joya, G.; Ocampo-Pérez, R. Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 2013, 93, 1268–1287. [Google Scholar] [CrossRef] [PubMed]
- Hernández, F.; Sancho, J.V.; Ibáñez, M.; Guerrero, C. Antibiotic residue determination in environmental waters by LC-MS. Trends Anal. Chem. 2007, 26, 466–485. [Google Scholar] [CrossRef]
- Boyd, G.R.; Reemtsma, H.; Grimm, D.A.; Mitra, S. Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada. Sci. Total Environ. 2003, 311, 135–149. [Google Scholar] [CrossRef]
- Petrović, M.; Hernando, M.D.; Díaz-Cruz, M.S.; Barceló, D. Liquid chromatography–tandem mass spectrometry for the analysis of pharmaceutical residues in environmental samples: A review. J. Chromatogr. A 2005, 1067, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.D. Environmental mass spectrometry: Emerging contaminants and current issues. Anal. Chem. 2006, 78, 4021–4074. [Google Scholar] [CrossRef] [PubMed]
- Dargnat, C.; Teil, M.J.; Chevreuil, M.; Blanchard, M. Phthalate removal throughout wastewater treatment plant Case study of Marne aval station (France). Sci. Total Environ. 2009, 407, 1235–1244. [Google Scholar] [CrossRef] [PubMed]
- Deblonde, T.; Cossu-Leguille, C.; Hartemann, P. Emerging pollutants in wastewater: A review of the literature. Int. J. Hyg. Environ. Health 2011, 214, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Avila, J.; Bonet, J.; Velasco, G.; Lacorte, S. Determination and occurrence of phthalates, alkylphenols, bisphenol A, PBDEs, PCBs and PAHs in an industrial sewage grid discharging to a Municipal Wastewater Treatment Plant. Sci. Total Environ. 2009, 407, 4157–4167. [Google Scholar] [CrossRef]
- Basheer, A. New generation nano-adsorbents for the removal of emerging contaminants in water. J. Mol. Liq. 2018, 261, 583–593. [Google Scholar] [CrossRef]
- Miège, C.; Choubert, J.-M.; Ribeiro, L.; Eusèbe, M.; Coquery, M. Le devenir des résidus pharmaceutiques dans les stations d’épuration d’eaux usées. Une synthèse de la littérature. Tech. Sci. Méthode 2009, 11, 75–94. [Google Scholar] [CrossRef]
- Wiebke, W.; Nodler, K.; Farinelli, A.; Blum, J.; Licha, T. Integrated approach for innovative monitoring strategies of reservoirs and lakes. Environ. Eng. Manag. J. 2018, 17, 2497–2505. [Google Scholar] [CrossRef]
- Yehya, T.; Favier, L.; Kadmi, Y.; Audonnet, F.; Fayad, N.; Gavrilescu, M.; Vial, C. Removal of carbamazepine by electrocoagulation: Investigation of some key operational parameters. Environ. Eng. Manag. J. 2015, 14, 639–645. [Google Scholar] [CrossRef]
- Dapcevich, M. Antibiotics Found in Global Rivers Exceed ‘Safe’ Levels, Study Finds. EcoWatch. 2019. Available online: https://www.ecowatch.com/antibiotics-global-rivers-2638404371.html (accessed on 10 August 2020).
- OECD. Pharmaceutical Residues in Freshwater: Hazards and Policy Responses; Organisation for Economic Co-Operation and Development: Paris, France, 2019. [Google Scholar] [CrossRef]
- Roston, B.A. Antibiotics Found in Rivers at Up. SlashGear 2019. Available online: https://www.slashgear.com/antibiotics-found-in-rivers-at-up-to-300-times-over-safe-levels-27578126/ (accessed on 15 July 2020).
- Cycon, M.; Mrozik, A.; Piotrowska-Sege, Z. Antibiotics in the soil environment—Degradation and their impact on microbial activity and diversity. Front. Microbiol. 2019. [Google Scholar] [CrossRef]
- Kraemer, S.A.; Ramachandran, A.; Perron, G.G. Antibiotic pollution in the environment: From microbial ecology to public policy. Microorganisms 2019, 7, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamm, C.; Rasanen, K.; Burdon, F.J.; Altermatt, F.; Jokela, J.; Joss, A.; Ackermann, M.; Eggen, R.I.L. Unravelling the impacts of micropollutants in aquatic ecosystems: Interdisciplinary studies at the interface of large-scale ecology. Adv. Ecol. Res. 2016, 55, 183–222. [Google Scholar] [CrossRef]
- Bao, L.-J.; Wei, Y.-L.; Yao, Y.; Ruan, Q.-Q.; Zeng, E.Y. Global trends of research on emerging contaminants in the environment and humans: A literature assimilation. Environ. Sci. Pollut. Res. 2015, 22, 1635–1643. [Google Scholar] [CrossRef] [PubMed]
- Manickum, T.; John, W. Occurrence, fate and environmental risk assessment of endocrine disrupting compounds at the wastewater treatment works in Pietermaritzburg (South Africa). Sci. Total Environ. 2014, 468–469, 584–597. [Google Scholar] [CrossRef] [PubMed]
- Ternes, T.A. Emerging Substances in Water. A New Challenge for Water Management. 2006. Available online: https://www.norman-network.net/sites/default/files/files/Events/2006-2008/2006Jun19-20-Stresa-EmEnvPollutants-KeyIssuesChallenges/03-sess1_ternes.pdf (accessed on 10 July 2020).
- Richardson, S.D.; Ternes, T.A. Water analysis: Emerging contaminants and current issues. Anal. Chem. 2005, 77, 3807–3838. [Google Scholar] [CrossRef] [PubMed]
- Giokas, D.L.; Sakkas, V.A.; Albanis, T.A.; Lampropoulou, D.A. Determination of UV-filter residues in bathing waters by liquid chromatography UV-diode array and gas chromatography-mass spectrometry after micelle mediated extraction-solvent back extraction. J. Chromatogr. A 2005, 1077, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Hiller, J.; Klotz, K.; Meyer, S.; Uter, W.; Hofa, K.; Greinera, A.; Goen, T.; Drexler, H. Systemic availability of lipophilic organic UV filters through dermal sunscreen exposure. Environ. Int. 2019, 132, 105068. [Google Scholar] [CrossRef] [PubMed]
- Sharifan, H.; Klein, D.; Morse, A.N. UV filters are an environmental threat in the Gulf of Mexico: A case study of Texas coastal zones. Oceanologia 2016, 58, 327–335. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Pan, L.; Wu, S.; Lu, L.; Xu, Y.; Zhu, Y.; Guo, M.; Zhuang, S. Recent advances on endocrine disrupting effects of UV filters. Int. J. Environ. Res. Public. Health 2016, 13, 782. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Peng, F.; Luo, Z.; Li, Y.; Li, H.; Yang, Z. Assessment of water contamination and health risk of endocrine disrupting chemicals in outdoor and indoor swimming pools. Sci. Total Environ. 2020, 704, 135277. [Google Scholar] [CrossRef] [PubMed]
- Ramos, S.; Homem, V.; Alves, A.; Santos, L. A review of organic UV-filters in wastewater treatment plants. Environ. Int. 2016, 86, 24–44. [Google Scholar] [CrossRef]
- Magi, E.; Scapolla, C.; Di Carro, M.; Rivaro, P.; Nguyen, K.T.N. Emerging pollutants in aquatic environments: Monitoring of UV filters in urban wastewater treatment plants. Anal. Methods 2013, 5, 428. [Google Scholar] [CrossRef]
- Regulation (EC) No. 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products. Brussels. 22 December 2009. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uriDOJ:L:2009:342:0059:0209:en:PDF (accessed on 25 August 2020).
- Cadena-Aizaga, M.I.; Montesdeoca-Esponda, S.; Torres-Padrón, M.E.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Organic UV filters in marine environments: An update of analytical methodologies, occurrence and distribution. Trends Environ. Anal. Chem. 2020, 25, e00079. [Google Scholar] [CrossRef]
- Regulation (EC) No. 1907/2006 of the European Parliament and of the Council of 18 December 2006 Concerning the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH). Brussels. 29 May 2007. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uriDOJ:L:2007:136:0003:0280:EN:PDF (accessed on 25 August 2020).
- Regulation No. 726/2004 of the European Parliament and of the Council of 31 March 2004 Laying Down Community Procedures for the Authorization and Supervision of Medicinal Products for Human and Veterinary Use and Establishing a European Medicines Agency. Brussels. 30 April 2004. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uriDCELEX:32004R0726&fromDEN (accessed on 25 August 2020).
- Regulation (EC) No. 1107/2009 of the European Parliament and of the Council of 21 October 2009 Concerning the Placing of Plant Protection Products on the Market and Repealing Council Directives 79/117/EEC and 91/414/EEC. Brussels. 24 November 2009. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uriDCELEX:32009R1107&fromDEN (accessed on 25 August 2020).
- Carere, M.; Polesello, S.; Kase, R.; Gawlik, B.M. The Emerging Contaminants in the Context of the EU Water Framework Directive. In Emerging Contaminants in River Ecosystems; Petrovic, M., Sabater, S., Elosegi, A., Barceló, D., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 197–216. [Google Scholar] [CrossRef]
- Sorlini, S.; Collivignarelli, M.C.; Miino, M.C. Technologies for the control of emerging contaminants in drinking water treatment plants. Environ. Eng. Manag. J. 2019, 18, 2203–2213. Available online: http://www.eemj.icpm.tuiasi.ro/pdfs/vol18/no10/11_85_Sorlini_19.pdf (accessed on 16 August 2020).
- Verlicchi, P.; Al Aukidy, M.; Zambello, E. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment-a review. Sci. Total Environ. 2013, 429, 123–155. [Google Scholar] [CrossRef] [PubMed]
- Bradley, P.M.; Barber, L.B.; Kolpin, D.W.; McMahon, P.B.; Chapelle, F.H. Potential for 4-n-nonylphenol biodegradation in stream sediments. Environ. Toxicol. Chem. 2008, 27, 260–265. [Google Scholar] [CrossRef]
- Barra Caracciolo, A.; Grenni, P.; Rauseo, J.; Ademollo, N.; Cardoni, M.; Rolando, L.; Patrolecco, L. Degradation of a fluoroquinolone antibiotic in an urbanized stretch of the River Tiber. Microchem. J. 2018, 136, 43–48. [Google Scholar] [CrossRef]
- Miraji, H.; Othman, O.C.; Ngassapa, F.N.; Mureithi, E.W. Research trends in emerging contaminants on the aquatic environments of Tanzania. Scientifica (Cairo) 2016, 3769690. [Google Scholar] [CrossRef] [Green Version]
- Mortensen, A.; Granby, K.; Eriksen, F.D.; Cederberg, T.L.; Friis-Wandall, S.; Simonsen, Y.; Broesbøl-Jensen, B.; Bonnichsen, R. Levels and risk assessment of chemical contaminants in byproducts for animal feed in Denmark. J. Environ. Sci. Health B 2014, 49, 797–810. [Google Scholar] [CrossRef] [PubMed]
- Naidu, R.; Arias Espana, V.A.; Liu, Y.; Jit, J. Emerging contaminants in the environment: Risk-based analysis for better management. Chemosphere 2016, 154, 350–357. [Google Scholar] [CrossRef]
- Wollenberger, L.; Halling-Sørensen, B.; Kusk, K.O. Acute and chronic toxicity of veterinary antibiotics to Daphnia magna. Chemosphere 2000, 40, 723–730. [Google Scholar] [CrossRef]
- Tratnyek, P.G.; Weber, E.J.; Schwarzenbach, R.P. Quantitative structure-activity relationships for chemical reductions of organic contaminants. Environ. Toxicol. Chem. 2009, 22, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Xu, J.; Keller, A.A.; He, L.; Gu, Y.; Zheng, W.; Sun, D.; Lu, Z.; Huang, J.; Huang, X.; et al. Occurrence and risk assessment of emerging contaminants in a water reclamation and ecological reuse project. Sci. Total Environ. 2020, 744, 140977. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.Y.; Li, Q.; Wang, X.C.; Wang, Y.; Wang, D.; Ngo, H.H. Micropollutants removal and health risk reduction in a water reclamation and ecological reuse system. Water Res. 2018, 138, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Guidelines for Human Exposure Assessment, Risk Assessment Forum. United States Environmental Protection Agency (USEPA): Washington, DC, USA. Available online: https://www.epa.gov/sites/production/files/2020-01/documents/guidelines_for_human_exposure_assessment_final2019.pdf (accessed on 16 August 2020).
- Hang, C.; Zhang, B.; Gong, T.; Xian, Q. Occurrence and health risk assessment of halogenated disinfection byproducts in indoor swimming pool water. Sci. Total Environ. 2016, 543, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Gavrilescu, M. Fate of pesticides in the environment and its bioremediation. Eng. Life Sci. 2005, 5, 497–526. [Google Scholar] [CrossRef]
- Panahandeh, M.; Mansouri, N.; Khorasani, N.; Karbassi, A.R. A study of pollution in sediments from anzali wetland with geo-accumulation index and ecological risk assessment. Environ. Eng. Manag. J. 2018, 17, 2255–2262. [Google Scholar]
- Dsikowitzky, L.; Crawford, S.E.; Nordhaus, I.; Lindner, F.; Dwiyitno; Irianto, H.E.; Ariyani, F.; Schwarzbauer, J. Analysis and environmental risk assessment of priority and emerging organic pollutants in sediments from the tropical coastal megacity Jakarta, Indonesia. Reg. Stud. Mar. Sci. 2020, 34, 101021. [Google Scholar] [CrossRef]
- Al Aukidy, M.; Verlicchi, P.; Jelic, A.; Petrovi, M.; Barcelo, D. Monitoring release of pharmaceutical compounds: Occurrence and environmental risk assessment of two WWTP effluents and their receiving bodies in the Po Valley, Italy. Sci. Total Environ. 2012, 438, 15–25. [Google Scholar] [CrossRef]
- Stuart, M.; Lapworth, D.; Crane, E.; Hart, A. Review of risk from potential emerging contaminants in UK groundwater. Sci. Total Environ. 2012, 416, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, W.; Egea, E. Health and environmental risks associated with emerging pollutants and novel green processes. Environ. Sci. Pollut. Res. 2018, 25, 6085–6086. [Google Scholar] [CrossRef] [Green Version]
- Riva, F.; Zuccato, E.; Davoli, E.; Fattore, E.; Castiglioni, S. Risk assessment of a mixture of emerging contaminants in surface water in a highly urbanized area in Italy. J. Hazard. Mater. 2019, 361, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Jaimes, J.A.; Postigo, C.; Melgoza-Alemán, R.M.; Aceña, J.; Barceló, D.; López de Alda, M. Study of pharmaceuticals in surface and wastewater from Cuernavaca, Morelos, Mexico: Occurrence and environmental risk assessment. Sci. Total Environ. 2018, 613–614, 1263–1274. [Google Scholar] [CrossRef]
- Fabrega, F.; Kumar, V.; Schuhmacher, M.; Domingo, J.L.; Nadal, M. PBPK modeling for PFOS and PFOA: Validation with human experimental data. Toxicol. Lett. 2014, 230, 244–251. [Google Scholar] [CrossRef]
- Kortenkamp, A.; Backhaus, T.; Faust, M. State of the Art Report on Mixture Toxicity. 2009. Available online: http://ec.europa.eu/environment/chemicals/effects/pdf/report_mixture_toxicity.pdf (accessed on 20 July 2020).
- Technical Guidance Document on Risk Assessment in Support of Commission Directive 93/67/EEC on Risk Assessment for New Notified Substances and Commission Regulation (EC) No. 1488/94 on Risk Assessment for Existing Substances. Part II. EUR 20418 EN/2. European Chemicals Bureau Part II. Available online: https://echa.europa.eu/documents/10162/16960216/tgdpart2_2ed_en.pdf (accessed on 25 August 2020).
- Wu, D.; Zhou, Y.; Lu, G.; Hu, K.; Yao, J.; Shen, X.; Wei, L. The occurrence and risks of selected emerging pollutants in drinking water source areas in Henan, China. Int. J. Environ. Res. Public Health 2019, 16, 4109. [Google Scholar] [CrossRef] [Green Version]
- Thomaidi, V.S.; Matsoukas, C.; Stasinakis, A.S. Risk assessment of triclosan released from sewage treatment plants in European rivers using a combination of risk quotient methodology and Monte Carlo simulation. Sci. Total Environ. 2017, 603, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Isidori, M.; Lavorgna, M.; Nardelli, A.; Pascarella, L.; Parrella, A. Toxic and genotoxic evaluation of six antibiotics on non-target organisms. Sci. Total Environ. 2005, 346, 87–98. [Google Scholar] [CrossRef]
- Lopez-Doval, J.C.; Montagner, C.C.; Fernandes Alburquerque, A.; Moschini-Carlos, V.; Umbuzeiro, G.; Pompeo, M. Nutrients, emerging pollutants and pesticides in a tropical urban reservoir: Spatial distributions and risk assessment. Sci. Total Environ. 2017, 575, 1307–1324. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Di Paolo, C.; Wu, X.; Shao, Y.; Seiler, T.-B.; Hollert, H. Optimization of screening-level risk assessment and priority selection of emerging pollutants–The case of pharmaceuticals in European surface waters. Environ. Int. 2019, 128, 1–10. [Google Scholar] [CrossRef]
- Yan, Z.; Liu, Y.; Yan, K.; Wu, S.; Han, Z.; Guo, R.; Chen, M.; Yang, Q.; Zhang, S.; Chen, J. Bisphenol analogues in surface water and sediment from the shallow Chinese freshwater lakes: Occurrence, distribution, source apportionment, and ecological and human health risk. Chemosphere 2017, 184, 318–328. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, L.; Deng, L.; Jin, Z. Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau. Sci. Total Environ. 2019, 650, 2004–2012. [Google Scholar] [CrossRef]
- Hernando, M.D.; Mezcua, M.; Fernandez-Alba, A.R.; Barcelo, D. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 2006, 69, 334–342. [Google Scholar] [CrossRef]
- Varjani, S.; Sudha, M.C. Occurrence and human health risk of micro-pollutants-A special focus on endocrine disruptor chemicals. In Current Developments in Biotechnology and Bioengineering. Emerging Organic Micro-Pollutants; Varjani, S., Tyagi, R.D., Larroche, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 23–39. [Google Scholar] [CrossRef]
- Fabrega, F.; Marquès, M.; Ginebreda, A.; Kuzmanovic, M.; Barceló, D.; Schuhmacher, M.; Domingo, J.L.; Nadal, M. Integrated Risk Index of Chemical Aquatic Pollution (IRICAP): Case studies in Iberian rivers. J. Hazard. Mater. 2013, 263P, 187–196. [Google Scholar] [CrossRef]
- New and Emerging Water Pollutants Arising from Agriculture, Organisation for Economic Co-Operation and Development, Paris. Available online: https://www.oecd.org/greengrowth/sustainable-agriculture/49848768.pdf (accessed on 16 August 2020).
- Pereira, L.C.; de Souza, A.O.; Bernardes, M.F.F.; Pazin, M.; Tasso, M.J.; Pereira, P.H.; Dorta, D.J. A perspective on the potential risks of emerging contaminants to human and environmental Health. Environ. Sci. Pollut. Res. 2015, 22, 13800–13823. [Google Scholar] [CrossRef]
- Carmalin, S.A.; Lima, E. Removal of emerging contaminants from the environment by adsorption. Ecotoxicol. Environ. Saf. 2018, 150, 1–17. [Google Scholar] [CrossRef]
- de Oliveira, J.F.; Fia, R.; Rodrigues, F.N.; Fia, F.R.L.; de Matos, M.P.; Siniscalchi, L.A.B.; Sanson, A.L. Quantification, removal and potential ecological risk of emerging contaminants in different organic loads of swine wastewater treated by integrated biological reactors. Chemosphere 2020, 260, 127516. [Google Scholar] [CrossRef] [PubMed]
- Lopera, A.E.-C.; Ruiz, S.G.; Alonso, J.M.Q. Removal of emerging contaminants from wastewater using reverse osmosis for its subsequent reuse: Pilot plant. J. Water Process. Eng. 2019, 29, 100800. [Google Scholar] [CrossRef]
- Mohapatra, D.P.; Kirpalani, D.M. Advancement in treatment of wastewater: Fate of emerging Contaminants. Can. J. Chem. Eng. 2019, 97, 2621–2631. [Google Scholar] [CrossRef]
- Buttiglieri, G.; Knepper, T.P. Removal of Emerging Contaminants in Wastewater Treatment: Conventional Activated Sludge Treatment. In Emerging Contaminants from Industrial and Municipal Waste. The Handbook of Environmental Chemistry; Barceló, D., Petrovic, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5. [Google Scholar] [CrossRef]
- Ji, J.; Kakade, A.; Yu, Z.; Khan, A.; Liu, P.; Li, X. Anaerobic membrane bioreactors for treatment of emerging contaminants: A review. J. Environ. Manag. 2020, 270, 110913. [Google Scholar] [CrossRef]
- Fast, S.A.; Gude, V.G.; Truax, D.D.; Martin, J.; Magbanua, B.S. A critical evaluation of advanced oxidation processes for emerging contaminants removal. Environ. Process 2017, 4, 283–302. [Google Scholar] [CrossRef]
- Rossner, A.; Shane, A.; Snyder, S.A.; Knappe, D.R.U. Removal of emerging contaminants of concern by alternative adsorbents. Water Res. 2009, 43, 3787–3796. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Thomaidis, N.S.; Xu, J. Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review. J. Hazard. Mater. 2017, 323, 274–298. [Google Scholar] [CrossRef]
- Avila, C.; Reyes, C.; Bayona, J.M.; Garcia, J. Emerging organic contaminant removal depending on primary treatment and operational strategy in horizontal subsurface flow constructed wetlands: Influence of redox. Water Res. 2013, 47, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J. Long-term performance of constructed wetlands with horizontal subsurface flow: Ten case studies from the Czech Republic. Ecol. Eng. 2011, 37, 54–63. [Google Scholar] [CrossRef]
- Chen, Y.; Vymazal, J.; Březinov, T.; Koželuh, M.; Kule, L.; Huang, J.; Chen, Z. Occurrence, removal and environmental risk assessment of pharmaceuticals and personal care products in rural wastewater treatment wetlands. Sci. Total Environ. 2016, 566–567, 1660–1699. [Google Scholar] [CrossRef]
- Gorito, A.M.; Ribeiro, A.R.; Almeida, C.M.R.; Silva, A.M.T. A review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation. Environ. Pollut. 2017, 227, 428–443. [Google Scholar] [CrossRef]
- Reyes-Contreras, C.; Hijosa-Valsero, M.; Sidrach-Cardona, R.; Bayona, J.M.; Becares, E. Temporal evolution in PPCP removal from urban wastewater by constructed wetlands of different configuration: A medium-term study. Chemosphere 2012, 88, 161–167. [Google Scholar] [CrossRef]
- Hijosa-Valsero, M.; Matamoros, V.; Pedescoll, A.; Martín-Villacorta, J.; Bécares, E.; García, J.; Bayona, J.M. Evaluation of primary treatment and loading regimes in the removal of pharmaceuticals and personal care products from urban wastewaters by subsurface-flow constructed wetlands. Int. J. Environ. Anal. Chem. 2010, 91, 632–653. [Google Scholar] [CrossRef]
- Hijosa-Valsero, M.; Matamoros, V.; Sidrach-Cardona, R.; Martín-Villacorta, J.; Bécares, E.; Bayona, J.M. Comprehensive assessment of the design configuration of constructed wetlands for the removal of pharmaceuticals and personal care products from urban wastewaters. Water Res. 2011, 44, 3669–3678. [Google Scholar] [CrossRef]
- Matamoros, V.; Bayona, J.M. Behavior of Emerging Pollutants in Constructed Wetlands. In The Handbook of Environmental Chemistry; Barceló, D., Kostianoy, A.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5, pp. 199–217, Part S/2. [Google Scholar]
- Llorens, E.; Matamoros, V.; Domingo, V.; Bayona, J.M.; García, J. Water quality improvement in a full-scale tertiary constructed wetland: Effects on conventional and specific organic contaminants. Sci. Total Environ. 2009, 407, 2517–2524. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Tan, S.K.; Gersberg, R.M.; Sadreddini, S.; Zhu, J.; Tuan, N.A. Removal of pharmaceutical compounds in tropical constructed wetlands. Ecol. Eng. 2011, 37, 460–464. [Google Scholar] [CrossRef]
- Matamoros, V.; Caselles-Osorio, A.; Garcia, J.; Bayona, J.M. Behaviour of pharmaceutical products and biodegradation intermediates in horizontal subsurface flow constructed wetland. A microcosm experiment. Sci. Total. Environ. 2008, 394, 171–176. [Google Scholar] [CrossRef]
- Song, H.L.; Nakano, K.; Taniguki, T.; Nomura, M.; Nishimura, O. Estrogenal removal from treated municipal effluent in small scale constructed wetlands with different depth. Bioresour. Technol. 2009, 100, 2945–2951. [Google Scholar] [CrossRef]
- Breitholtz, M.; Naslund, M.; Strae, D.; Borg, H. An evaluation of free water surface wetlands as tertiary sewage water treatment of micro-pollutants. Ecotoxicol. Environ. Saf. 2012, 78, 63–71. [Google Scholar] [CrossRef]
- Ranieri, E.; Verlicchi, P.; Young, T.M. Paracetamol removal in subsurface flow constructed wetlands. J. Hydrol. 2011, 404, 130–135. [Google Scholar] [CrossRef]
- Matamoros, V.; Arias, C.; Brix, H.; Bayona, J.M. Preliminary screening of small-scale domestic wastewater treatment systems for removal of pharmaceutical and personal care products. Water Res 2009, 43, 55–62. [Google Scholar] [CrossRef]
- Matamoros, V.; Salvado, V. Evaluation of the seasonal performance of a water reclamation pond-constructed wetland system for removing emerging contaminants. Chemosphere 2012, 86, 111–117. [Google Scholar] [CrossRef]
- Agudelo, R.M.; Penuela, G.; Aguirre, N.J.; Moratod, J.; Jaramill, M.L. Simultaneous removal of chlorpyrifos and dissolved organic carbon using horizontal sub-surface flow pilot wetlands. Ecol. Eng. 2010, 36, 1401–1408. [Google Scholar] [CrossRef]
- Shelef, O.; Gross, A.; Rachmilevitch, S. Role of plants in a constructed wetland: Current and new perspectives. Water 2013, 5, 405–419. [Google Scholar] [CrossRef]
- Chen, C.; Guo, W.; Ngo, H.H.; Lee, D.-J.; Tung, K.-L.; Jin, P.; Wang, J.; Wu, Y. Challenges in biogas production from anaerobic membrane bioreactors. Renew. Energy 2016, 98, 120–134. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, K.; Huang, X. Full-scale MBR applications for leachate treatment in China: Practical, technical, and economic features. J. Hazard. Mater. 2020, 389, 122138. [Google Scholar] [CrossRef]
- Tran, N.H.; Chen, H.; Reinhard, M.; Mao, F.; Gin, K.Y.H. Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes. Water Res. 2016, 104, 461–472. [Google Scholar] [CrossRef]
- Khan, N.A.; Khan, S.U.; Sirajuddin, K.; Ahmed, S.; Farooqi, I.H.; Yousefi, M.; Mohammadi, A.A.; Changani, F. Recent trends in disposal and treatment technologies of emerging-pollutants-A critical review. Trends Anal. Chem. 2020, 115744. [Google Scholar] [CrossRef]
- Lin, H.; Peng, W.; Zhang, M.; Chen, J.; Hong, H.; Zhang, Y. A review on anaerobic membrane bioreactors: Applications, membrane fouling and future perspectives. Desalination 2013, 314, 169–188. [Google Scholar] [CrossRef]
- Dereli, R.K.; Ersahin, M.E.; Ozgun, H.; Ozturk, I.; Jeison, D.; van der Zee, F.P.; van Lier, J.B. Potentials of anaerobic membrane bioreactors to overcome treatment limitations induced by industrial wastewaters. Bioresour. Technol. 2012, 122, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.J.; Li, W.W.; Yu, H.Q. Advances in biogas technology. Adv. Biochem. Eng. Biotechnol. 2012, 128, 119–141. [Google Scholar] [CrossRef]
- Stuckey, D.C. Recent developments in anaerobic membrane reactors. Bioresour. Technol. 2012, 122, 137–148. [Google Scholar] [CrossRef]
- Guo, W.; Khan, M.A.; Ngo, H.H.; Johir, M.A.H.; Nghiem, L.D.; Ni, B.-J. Anaerobic Membrane Bioreactors-An Introduction. In Current Developments in Biotechnology and Bioengineering; Ngo, H.H., Guo, W., Ng, H.Y., Mannina, G., Pandey, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–24. [Google Scholar]
- Meng, F.G.; Chae, S.R.; Drews, A.; Kraume, M.; Shin, H.S.; Yang, F.L. Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material. Water Res. 2009, 43, 1489–1512. [Google Scholar] [CrossRef] [PubMed]
- Morrow, C.P.; McGaughey, A.L.; Hiibel, S.R.; Childress, A.E. Submerged or sidestream? The influence of module configuration on fouling and salinity in osmotic membrane bioreactors. J. Membr. Sci. 2018, 548, 583–592. [Google Scholar] [CrossRef]
- Maaz, M.; Yasin, M.; Aslam, M.; Kumar, G.; Atabani, A.E.; Idrees, M.; Anjum, F.; Jamil, F.; Ahmad, R.; Khan, A.L.; et al. Anaerobic membrane bioreactors for wastewater treatment: Novel configurations, fouling control and energy considerations. Bioresour. Technol. 2019, 283, 358–372. [Google Scholar] [CrossRef]
- Shin, C.; Bae, J. Current status of the pilot-scale anaerobic membrane bioreactor treatments of domestic wastewaters: A critical review. Bioresour. Technol. 2018, 247, 1038–1046. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Xiaochang, C.; Wang, X.C.; Ngo, H.H.; Sun, Q.; Yan, Y. Anaerobic dynamic membrane bioreactor (AnDMBR) for wastewater treatment: A review. Bioresour. Technol. 2018, 247, 1107–1118. [Google Scholar] [CrossRef]
- Katuri, K.P.; Werner, C.M.; Jimenez-Sandoval, R.J.; Chen, W.; Jeon, S.; Logan, B.E.; Lai, Z.; Amy, G.L.; Saikaly, P.E. A novel anaerobic electrochemical membrane bioreactor (AnEMBR) with conductive hollow-fiber membrane for treatment of low-organic strength solutions. Environ. Sci. Technol. 2014, 48, 12833–12841. [Google Scholar] [CrossRef]
- Monsalvo, V.M.; McDonald, J.A.; Khan, S.J.; Le-Clech, P. Removal of trace organics by anaerobic membrane bioreactors. Water Res. 2014, 49, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Wijekoon, K.C.; McDonald, J.A.; Khan, S.J.; Hai, F.I.; Price, W.E.; Nghiem, L.D. Development of a predictive framework to assess the removal of trace organic chemicals by anaerobic membrane bioreactor. Bioresour. Technol. 2015, 189, 391–398. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; McDonald, J.; Price, W.E.; Khan, S.J.; Hai, F.I.; Ngo, H.H.; Guo, W.; Nghiem, L.D. Effects of salinity build-up on the performance of an anaerobic membrane bioreactor regarding basic water quality parameters and removal of trace organic contaminants. Bioresour. Technol. 2016, 216, 399–405. [Google Scholar] [CrossRef]
- Huang, B.; Wang, H.-C.; Cui, D.; Zhang, B.; Chen, Z.-B.; Wang, A.-J. Treatment of pharmaceutical wastewater containing β-lactams antibiotics by a pilot-scale anaerobic membrane bioreactor (AnMBR). Chem. Eng. J. 2018, 341, 238–247. [Google Scholar] [CrossRef]
- Periyaraman, P.M.; Karan, S.; Ponnusamy, S.K.; Vaidyanathan, V.; Vasanthakumar, S.; Dhanasekaran, A.; Subramanian, S. Adsorption of an anionic dye onto native and chemically modified agricultural waste. Environ. Eng. Manag. J. 2019, 18, 257–270. [Google Scholar] [CrossRef]
- Hlihor, R.-M.; Figueiredo, H.; Tavares, T.; Gavrilescu, M. Biosorption potential of dead and living Arthrobacter viscosus biomass in the removal of Cr(VI): Batch and column studies. Process Saf. Environ. Prot. 2017, 108, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Adewuyi, A. Chemically modified biosorbents and their role in the removal of emerging pharmaceutical waste in the water system. Water 2020, 12, 1551. [Google Scholar] [CrossRef]
- Nguyen, L.N.; Hai, F.I.; Yang, S.; Kang, J.; Leusch, F.D.L.; Roddick, F.; Price, W.E.; Nghiem, L.D. Removal of pharmaceuticals, steroid hormones, phytoestrogens, UV-filters, industrial chemicals and pesticides by Trametes versicolor: Role of biosorption and biodegradation. Int. Biodeterior. Biodegrad. 2014, 88, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Chaukura, N.; Gwenzi, W.; Tavengwa, N.; Manyuchi, M.M. Biosorbents for the removal of synthetic organics and emerging pollutants: Opportunities and challenges for developing countries. Environ. Dev. 2016, 19, 84–89. [Google Scholar] [CrossRef]
- Bernhard, M.; Müller, J.; Knepper, T.P. Biodegradation of persistent polar pollutants in wastewater: Comparison of an optimised lab-scale membrane bioreactor and activated sludge treatment. Water Res. 2006, 40, 3419–3428. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.N.; Hai, F.I.; Kang, J.; Price, W.E.; Nghiem, L.D. Removal of emerging trace organic contaminants by MBR-based hybrid treatment processes. Int. Biodeter. Biodegr. 2013, 85, 474–482. [Google Scholar] [CrossRef] [Green Version]
- Dolar, D.; Gros, M.; Rodriguez-Mozaz, S.; Moreno, J.; Comas, J.; Rodriguez-Roda, I.; Barceló, D. Removal of emerging contaminants frommunicipal wastewater with an integrated membrane system, MBR–RO. J. Hazard. Mater. 2012, 239, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Sahar, E.; David, I.; Gelman, Y.; Chikurel, H.; Aharoni, A.; Messalem, R.; Brenner, A. The use of RO to remove emerging micropollutants following CAS/UF or MBR treatment of municipal wastewater. Desalination 2011, 273, 142–147. [Google Scholar] [CrossRef]
- Ensano, B.M.B.; Borea, L.; Naddeo, V.; de Luna, M.D.G.; Belgiorno, V. Control of emerging contaminants by the combination of electrochemical processes and membrane bioreactors. Environ. Sci. Pollut. Res. 2019, 26, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Kim, S.D.; Kim, H.Y.; Lim, S.J.; Lee, M.; Yu, S. Degradation and toxicity assessment of sulfamethoxazole and chlortetracycline using electron beam, ozone and UV. J. Hazard. Mater. 2012, 227, 237–242. [Google Scholar] [CrossRef]
- Melo-Guimaraes, A.; Torner-Morales, F.J.; Durán-Álvarez, J.C.; Jiménez-Cisneros, B.E. Removal and fate of emerging contaminants combining biological, flocculation and membrane treatments. Water Sci. Technol. 2013, 67, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Ibanez, M.; Gracia-Lor, E.; Bijlsma, L.; Morales, E.; Pastor, L.; Hernández, F. Removal of emerging contaminants in sewage water subjected to advanced oxidation with ozone. J. Hazard. Mater. 2013, 260, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Reungoat, J.; Escher, B.; Macova, M.; Argaud, F.; Gernjak, W.; Keller, J. Ozonation and biological activated carbon filtration of wastewater treatment plant effluents. Water Res. 2012, 46, 863–872. [Google Scholar] [CrossRef] [PubMed]
Group | Compounds |
---|---|
Various chemicals | |
New phthalates | DPHP (Di-2-propylheptyl phthalate) |
Non-phthalate plasticizers | ATBC (Acetyltributyl citrate), DEHA (Di-2-ethylhexyl adipate), DEHS (Di-2-ethylhexyl sebacate), DEHTP (Di-2-ethylhexyl terephthalate), DINCH (1,2-Cyclohexanedicarboxylicacid-diisononyl ester), DnBA (Di-n-butyl adipate), DIBA (Di-isobutyl adipate), DINA (Di-iso-nonyl adipate), TOTM (Tri-2-ethylhexyltrimellitate) |
Emerging flame retardants | DBDPE (Decabromodiphenyl ethane (BDPE-209)), TBBPA-BDBPE (Tetrabromobisphenol-A-bis(2,3)-dibromopropyl ether), BEH-TEBP (Bis(2-ethylhexyl)-tetrabromo phthalate), BTBPE (1,2-Bis(2,4,6-tribromophenoxy) ethane), EH-TBB (2-Ethylhexyl-2,3,4,5-tetrabromobenzoate), DBE-DBCH (Tetrabromoethylcyclohexane), PBB (Pentabromobenzene), PBT (Pentabromotoulene), HBB (Hexabromobenzene), TBX (1,2,4,5-tetrabromo-3,6-dimethylbenzene), TBCT (Tetrabromo-o-chlorotoluene), DDC-CO (Dechloran Plus) |
BPA (Bisphenol A) substitutes | BPS (Bisphenol S), BPF (Bisphenol F), BPAF (Bisphenol AF) |
Drugs | Methylamphetamine, tetrahydrocannabinol (THC) |
Technologies | |
3D-printing | Caprolactam, lactide, Irganox 1076, siloxanes (D3-D6) |
E-cigarettes, e-shishas | Propylene glycol, glycerol, glycidol, acetol, diacetyl |
Energy saving lamps | Mercury (Hg) |
Nanosprays | Silver (Ag), siloxanes, MgO, ZnO, TiO2 |
Pharmaceuticals compounds | |
Antibiotics | Trimethoprim, Ciprofloxacin, Sulfamethoxazole |
Analgesics and anti-inflammatory | Naproxen, Ibuprofen, Diclofenac, Salicylic acid, Ketoprofen |
Antiepileptics | Carbamazepine |
Disinfectant | Triclosan |
Diuretics | Furosemide, Hydrochlorothiazide, Amidotrizoic acid, Diatrizoate, Iotalamic acid |
Lipid regulators | Fenofibric acid, Gemfibrozil, Bezafibrate, Atenolol |
Cosmetics | Galaxolide, Tonalide |
Other pollutants of concern | |
Corrosion inhibitors | Benzothiazoles, benzotriazoles |
UV filters | Benzophenone-3, homosalate, octocrylene, 4-MBC, 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) |
Synthetic musk | Galaxolide (HHCB), tonalide |
Biocides | parabens, neonicotinoids |
Particles | Microplastics |
Therapeutic Group | Compounds | Taxonomic Group | Long-Term Exposure (mg/L) |
---|---|---|---|
Anti-bacterial | Trimethoprim | Plant (duckweed) | >1.0 (EC10) |
Anti-bacterial (aminoglycoside) | Neomycin | Plant (duckweed) | >1.0 (EC10) |
(Aminoglycoside) anti-bacterial | Streptomycin | Plant (duckweed) | >1.0 (EC10) |
Anti-bacterial | Cephalexin | Plant (duckweed) | >1.0 (EC10) |
Anti-bacterial | Ciprofloxacin | Plant (duckweed) | 0.106 (EC10) |
Norfloxacin | Plant (duckweed) | 0.206 (EC10) | |
Anti-bacterial (macrolide antibiotic) | Erythromycin | Plant (duckweed) | >1.0 (EC10) |
Anti-bacterial (macrolide antibiotic) | Lincomycin | Plant (duckweed) | >1.0 (EC10) |
Roxithromycin | Plant (duckweed) | >1.0 (EC10) | |
Anti-bacterial (macrolide antibiotic) | Tylosin | >1.0 (EC10) | |
Anti-bacterial (sulfonamide) | Sulfadimethoxine | Plant (duckweed) (duckweed) | >0.044 (EC10) |
Sulfamethazine | Plant (duckweed) | >1.0 (EC10) | |
Plant | Plant (duckweed) | 0.011 (EC10) 2.33 (EC50) | |
Sulfamethoxazole | 2.33 (EC50) | ||
Sulfachlorpyridazine | |||
Anti-bacterial (tetracycline) | Chlortetracycline | Plant (duckweed) | 0.036 (EC10) |
Doxycycline | Plant (duckweed) | 0.055 (EC10) | |
Oxytetracycline | Plant (duckweed) | 0.788 (EC10) | |
Tetracycline | Plant (duckweed) | 4.92 (EC50) | |
Plant (duckweed) | 0.23 (EC10) | ||
Anti-depressant | Plant (duckweed) | >1.0 (EC10) | |
Fluvoxetine | Sertraline | Plant (duckweed) | >1.0 (EC10) |
Anti-diabetic (biguanide) | Metformin | Alga (green) | >320.0 (EC50) |
Plant (duckweed) | 110.0 (EC50) | ||
Anti-epileptic | Carbamazepine | Alga (green) | 74.0 (EC50) |
Plant (duckweed) | >1.0 (EC10) | ||
Plant (duckweed) | 25.5 (EC50) | ||
Anti-hyperlipidemic | Atorvastatin | Plant (duckweed) | 0.085 (EC10) |
Anti-hyperlipoproteinemic | Clofibric acid | Alga | 5.4 (EC10) |
Alga (green) | 115.0 (EC50) | ||
Plant (duckweed) | 12.5 (EC50) | ||
Anti-hypertensive | Captropril | Alga (green) | 168.0 (EC50) |
Plant (duckweed) | 25.0 (EC50) | ||
Anti-protozoal | Metronidazole | Alga (green) | 2.03 (EC10) |
Alga (green) | 19.0 (EC10) | ||
Bone resorption inhibitor | Tiludronate | Alga (cyanobacteria) | 13.3 (EC50) |
Alga (green) | 36.6 (EC50) | ||
Nicotine metabolite | Cotinine | Plant (duckweed) | >1.0 (EC10) |
Non-steroid anti-inflammatory drug | Acetaminophen (paracetamol) | Plant (duckweed) | >1.0 (EC10) |
Diclofenac | Alga (green) | 72.0 (EC50) | |
Plant (duckweed) | 7.5 (EC50) | ||
Ibuprofen | Alga (green) | 315.0 (EC50) | |
Plant (duckweed) | >1.0 (EC10) | ||
Naproxen | Plant (duckweed) | 22.0 (EC50) | |
Alga (green) | >320.0 (EC50) | ||
Plant (duckweed) | 24.2 (EC50) | ||
Estrogen | Ethinylestradiol | Alga | 0.054 (EC10) |
β-Adrenergic receptor blocker | Metoprolol | Alga (green) | 7.3 (EC50) |
Plant (duckweed) | >320.0 (EC50) | ||
Propranolol | Alga (green) | 5.8 (EC50) | |
Plant (duckweed) | 114.0 (EC50) |
Emerging Pollutant | Ecology Effect | Human Health Effect |
---|---|---|
Engineered nanoparticles | Toxicity in plants, fish, earthworm, bacteria (growth, mortality, reproduction, gene expression) | Cytotoxicity, oxidative stress, inflammatory effects, in lungs, genotoxicity, carcinogenic effects, granulomas, thickening of alveolar wall and augmented intestinal collagen staining |
Endocrine disruptors | Toxic to wildlife, human | Alter reproductively relevant, sexually dimorphic neuroendocrine system, alter endogenous steroid levels, etc., diabetes, problems in the cardiovascular system, abnormal neural behaviors and linked to obesity |
Ionic liquids | Inhibitory effects on a variety of bacteria and fungi, influencing the growth rate of algae, toxic to invertebrates, fish and frogs | Adverse effects on neuronal process, cytotoxicity |
Perfluorinated compounds | Bioaccumulation in fish and fishery products | Accumulate primarily in the serum, kidney and liver, potentially adverse effects on developmental, reproductive systems and other damaging outcomes |
Range of RQf Values | Risk Characterization |
---|---|
RQf ≥ 1 | High environmental risk |
1 > RQf ≥ 0.1 | Moderate environmental risk |
0.1 > RQf ≥ 0.01 | Small-scale adverse effect (endurable risk) |
0.01 > RQf > 0 | Limited (negligible risk) |
RQf = 0 | No risk (safe) |
Treatment Process | Advantages | Challenges |
---|---|---|
Conventional | ||
Biological activated carbon | A wide range of EPs removal from wastewater | Relatively high cost in operation and maintenance |
Removal of residual disinfection/oxidation products | Regeneration and disposal of high sludge amounts | |
Not generating toxic active products | Processing of sludge can increase total cost by 50–60% | |
Microalgae reactor | Resource recovery of algal biomass, used as fertilizer | Removal efficiencies affected by cold season |
High quality effluent and no acute toxicity risk associated with EPs | EPs cannot be degraded properly | |
Activated sludge | Lower capital and operational costs than AOPs | Low efficiencies for pharmaceuticals and beta blockers |
More environmentally friendly than chlorination | Large amount of sludge containing EPs | |
Unsuitable where Chemical Oxygen Demand (COD) levels are higher than 4000 mgL−1 | ||
Non-conventional | ||
Constructed wetland | Low energy consumption and low operational and maintenance costs | Clogging, solids entrapment and sediments formation |
High performance on removal of estrogens, pathogens | Biofilm growth, chemical precipitation and seasonal dependent | |
Needs large area of lands and long retention time | ||
MBR | Effective for the removal of biorecalcitrant EPs | High energy consumption and fouling control of heat and mass transfer |
Small footprint | High aeration cost and roughness of membrane | |
Pharmaceutical pollutants have low efficiencies | ||
Chemical process | ||
Coagulation | Reduced turbidity arising from suspended inorganic and organic particles | Ineffective micropollutants removal |
Increased sedimentation rate through suspended solid particles formation | Large amount of sludge | |
Introduction of coagulant slats in the aqueous phase | ||
Ozonation | Strong affinity to EPs in the presence of H2O2 | High energy consumption, formation of oxidative by-products |
Selective oxidant favoring disinfection and sterilization properties | Interference of radical scavengers | |
AOPs | Major ancillary effects on removal of EPs such as pharmaceuticals, personal care products (PCPs and pesticides | Energy consumption issues, operational and maintenance cost |
Short degradation rate | Formation of toxic disinfection by-products | |
Interference of radical scavengers | ||
Fenton and photo-Fenton | Degradation and mineralization of EPs | Decrease in OH* forming chloro and sulfato-Fe(III) complexes or due to scavenge of OH* forming Cl2 * and SO4 *- in the presence of chloride and sulphate ions |
Photocatalysis (TiO2) | Sunlight can be used by avoiding UV light | |
Degrading persistent organic compounds | Difficult to treat large volume of wastewater | |
High reaction rates upon using catalyst | Cost associated with artificial UV lamps and electricity | |
Low price and chemical stability of TiO2 catalyst and easier recovery | Separation and reuse of photocatalytic particles from slurry suspension | |
Physical process | ||
Micro- or ultra-filtration | Can remove EPs and pathogens | Not fully effective in removing some EPs as pore sizes vary from 100 to 1000 times, larger than the micropollutants |
Nanofiltration | Useful for treating saline water and wastewater treatment plants (WWTP) influents | High energy demand, membrane fouling and disposal issue |
Can remove dye stuff and pesticides | Limited application in pharmaceuticals removal | |
Reverse osmosis | Useful for treating saline water and WWTP influents | High energy demand, membrane fouling and disposal issue |
Can remove PCPs, endocrine disrupting compounds (EDCs) and pharmaceuticals | Corrosive nature of finished water and lower pharmaceutical removal |
Emerging Pollutant | Constructed Wetlands | Removal Efficiency (%) | Operating Scale * | References |
---|---|---|---|---|
Ibuprofen | HSSF-CW | 74–99 | [103] | |
SF-CW | 45–95 | [105] | ||
FW-SW | 27–74 (winter) 6–96 (summer) | [106,107] | ||
SSF-CW | 71 | [108] | ||
VSSF-CW | 55–99 | [103] | ||
SF-CW | 95–96 | Full scale | [109] | |
SSF-CW | 71–79.7 | [110] | ||
SF-CW | 50–100 | [101] | ||
Ketoprofen | FW-SSF | 47–81 | [105] | |
FW-SF | 11–50 (winter) | [106,107] | ||
SF-CW | 47–91 | [103] | ||
HSSF-CW | 10–90 | [103] | ||
Naproxen | FW-SSF | 58–81 | [105] | |
FW-SF | 27–66 (winter) 27–83 (summer) | [106,107] | ||
SF-CW | 75–76 | [103] | ||
HSSF-CW | 76–97 | [103] | ||
VSSF-CW | 69–96 | [103] | ||
SSF-CW | 85 | [108] | ||
SF-CW | 52–92 | [101] | ||
SF-CW | 82.8–91.3 | [110] | ||
Carbamazepine | FW-SSF | 35–71 | [105] | |
SSF-CW | 16 | [108] | ||
SF-CW | 32–37 | [111] | ||
SSF-CW | 26.7–28.4 | [110] | ||
Galaxolide | FW-SSF | 67–82 | [105] | |
SF-CW | 88–90 | [111] | ||
SF-CW | 87 | [112] | ||
Diclofenac | FW-SF | 17–26 (winter) 36–52 (summer) | Full scale | [106,107] |
SF-CW | 20–50 | [103] | ||
HSSF-CW | 24–93 | [103] | ||
VSSF-CW | 53–73 | [103] | ||
SF-CW | 73–96 | [111] | ||
SF-CW | 85 | [109] | ||
Tramadol | SF-CW | 12–26 | [113] | |
HSSF-CW | 54–85 | [103] | ||
Paracetamol | HSSF-CW | 95–100 | [103] | |
HSSF-CWs | >90 | [114] | ||
hybrid-CWs | >95–99 | [101] | ||
Acetaminophen | HSSF-CWs | >90 | [114] | |
Oxybenzone | HSSF-CWs | >97 | [115] | |
Atenolol | HSSF-CWs | 58–99 | [103] | |
SF-CWs | 27–53 | [113] | ||
HSSF-CWs | 48 | [48] | ||
Metoprolol | HSSF-CWs | 60–93 | [103] | |
SF-CWs | 3–30 | [113] | ||
HSSF-CWs | 11 | [48] | ||
Furosemide | HSSF-CWs | 80–96 | [103] | |
HSSF-CWs | 35–71 | [48,115] | ||
Triclosan | HSSF-CWs | 62–91 | [103] | |
Reclamation pond-wetland | 74–93 | Full scale | [116] | |
ChlorpyrifosMecoprop | SSF-CWs | >96 | [117] | |
SF-CWs | 79–91 | [111] | ||
SSF-CWs | 22 | [108] |
Emerging Pollutant | Removal Efficiency (%) | References |
---|---|---|
Bisphenol A | 31.5 | [134] |
Androsterone | 98 | [134] |
Linuron | 88.1 | [135] |
Diazinnon | 80 | [136] |
Triclosan | 90.2 | [134] |
Ceftriaxone | 47.7 | [137] |
Ampicillin | 34.6 | [137] |
Amoxicillin | 73.2 | [137] |
Category | EPs | Biosorption | |||
---|---|---|---|---|---|
Live (Fungus) | Inactivated (Fungus) | ||||
Influent (μgL−1) | Removal (%) | Influent (μgL−1) | Removal (%) | ||
EDCs ** | Androstenedione | ||||
Androsterone | |||||
E1 | 50 | 72 | 50 | 31.5 | |
E2 | 50 | 60.5 | 50 | 29.5 | |
EE2 | 50 | 62 | 1.50; 2.10 | 1.38; 2.76 | |
E3 | 50 | 4.5 | 50 | 13 | |
17β-Estradiol-17-acetate | 50 | 79 | 50 | 84 | |
Bisphenol A | 50 | 65 | 1.50; 2.10 | 1.24; 2.59 | |
4-tert-butylphenol | 50 | 33 | 50 | 10.5 | |
nonylphenol | |||||
Octylphenol | |||||
4-tert-octylphenol | 90 | 82.5 | |||
4-n-nonylphenol | |||||
Testosterone | |||||
Dihydrotesterone | |||||
Pesticides | Atrazine | 50 | 18 | 50 | 9 |
Dicamba | |||||
Fenoprop | 50 | 01 | 50 | 0 | |
2,4-D | |||||
Mecoprop | |||||
Pentachlorophenol | 50 | 63 | 50 | 96 | |
Beta-blockers | Triclosan | 50 | 78.5 | 50 | 97 |
Atendol | |||||
Metoprolol | |||||
Nadolol | |||||
Propranolol | |||||
Sotalol | |||||
Salbutamol | |||||
PCPs ** | Benzophenone | 50 | 40 | 1.50; 2.10 | 1.11.5; 2.83 |
Oxybenzene | 50 | 54.5 | 59.5 | ||
Propyl parabene | |||||
Salicylic acid | 50 | 68 | 50 | 0 | |
Antiplatelet agents | Codeine | ||||
Paracetamol | |||||
Anxiety relievers | Clopidogrel | ||||
Hydrocodone | |||||
Antagonists | Diazepam | ||||
Pain-relievers | Famotidine | ||||
Gastroesophageal | Lorazepam | ||||
Ranitidine | |||||
Analgesics | Carbamazepine | 50 | 01 | 50 | 07 |
Citalopram | |||||
Diclofenac | 50 | 97 | 50 | 43 | |
Ibuprofen | 50 | 100 | 50 | 27 | |
Lorazepan | |||||
Metronidazole | |||||
Naprox | 50 | 100 | 50 | 17 | |
Primidone | 50 | 12 | 50 | 27 | |
Trazodone | |||||
Anti-depressants | Amitriptyline | 50 | 05 | 50 | 09 |
Anticonvulsants | Ketoprofen | 50 | 22 | 50 | 11 |
Lipid regulators | Clofibric acid | 50 | 06 | 50 | 18 |
Gemifibrozil | 50 | 100 | 50 | 57.5 | |
Diuretics | Hydrochlorothiazide | ||||
Furosemide | |||||
Antibiotics | Azithromycin | ||||
Clarithromycin | |||||
Erythromycin | |||||
Ofloxacin | |||||
Sulfamethaxazole | |||||
Trimethoprim | |||||
Anti-inflammatory | Acetaminophen | ||||
Stimulant | Caffeine |
Emerging Pollutant | Removal Efficiency, % | ||||
---|---|---|---|---|---|
HSSF-CW [120] | Lab-Scale MBR [143] | Biological Filtration [111] | Biosorption [144] | ||
Live Fungus | Inactivated Fungus | ||||
Diclofenac | 55 | 58 | 93 | 97 | 43 |
Carbamazepine | 26 | 13 | 5 | 1 | 7 |
Naproxen | 91 | - | 72 | 100 | 17 |
Atrazine | - | 9 | - | 18 | 9 |
Emerging Pollutant | First Step | Second Step | Removal Efficiency, % | Reference |
---|---|---|---|---|
Propanolol | Membrane Biological Reactor | Reverse Osmosis | 99.5 | [145,146] |
Diclofenac | Membrane Biological Reactor | Reverse Osmosis | 95 | [146] |
Activated sludge + Ultrafiltration | Ultrasounds | 99.7 | [146] | |
Membrane Biological Reactor | Electrochemical Process | 75 | [147] | |
Ibuprofen | Biological Activated Carbon | Ultrafiltration | 45 | [148] |
Bisphenol A | Flocculants + Activated Sludge | Ultrafiltration | 95 | [149] |
Sulfonamides | Membrane Biological Reactor | Reverse Osmosis | >93 | [146] |
Salicylic acid | Membrane Biological Reactor | Ultrafiltration | 92.6 | [144] |
Membrane Biological Reactor | Nanofiltration | 97.3 | [144] | |
Membrane Biological Reactor | Reverse Osmosis | 95.4 | [144] | |
Activated sludge | Ultrafiltration + Reverse Osmosis | 99.9 | [144] | |
Clarithromycin | Membrane Biological Reactor | Reverse Osmosis | 99.5 | [145] |
Ozonation | Ultrasound | 94.3 | [150] | |
Ozonation | Ultrasound | 100 | [150] | |
Activated sludge | Ultrafiltration + Reverse Osmosis | 95.9 | [146] | |
Atrazine | Biological Activated Carbon | Ozonation | 70 | [151] |
Pentachlorophenol | Membrane Biological Reactor | Reverse Osmosis | 99 | [144] |
Membrane Biological Reactor | UV Oxidation | 99 | [144] | |
2,4-D | Biological Activated Carbon | Ozonation | 92.9 | [151] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasilachi, I.C.; Asiminicesei, D.M.; Fertu, D.I.; Gavrilescu, M. Occurrence and Fate of Emerging Pollutants in Water Environment and Options for Their Removal. Water 2021, 13, 181. https://doi.org/10.3390/w13020181
Vasilachi IC, Asiminicesei DM, Fertu DI, Gavrilescu M. Occurrence and Fate of Emerging Pollutants in Water Environment and Options for Their Removal. Water. 2021; 13(2):181. https://doi.org/10.3390/w13020181
Chicago/Turabian StyleVasilachi, Ionela Cătălina, Dana Mihaela Asiminicesei, Daniela Ionela Fertu, and Maria Gavrilescu. 2021. "Occurrence and Fate of Emerging Pollutants in Water Environment and Options for Their Removal" Water 13, no. 2: 181. https://doi.org/10.3390/w13020181
APA StyleVasilachi, I. C., Asiminicesei, D. M., Fertu, D. I., & Gavrilescu, M. (2021). Occurrence and Fate of Emerging Pollutants in Water Environment and Options for Their Removal. Water, 13(2), 181. https://doi.org/10.3390/w13020181