Groundwater Storage Changes in the Major North African Transboundary Aquifer Systems during the GRACE Era (2003–2016)
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Areas
2.2. Gravity Recovery and Climate Experiment (GRACE) Mascon-Based Terrestrial Water Storage (TWS)
2.2.1. CSR GRACE RL06 Mascon Solutions
2.2.2. JPL GRACE RL06 Mascon Solutions
2.3. GLEAM
- v3.3a which is a global record of actual evaporation and its different component, as well as root zone SM derived from satellite-based SSM, VOD, and snow water equivalent (SWE), reanalysis air temperature and radiation, and a multi-source precipitation product
- v3.3b which is fully satellite-based and quasi-global (50° N–50° S) [46].
2.4. Water Volume of Lake Nasser from Hydroweb
2.5. Monthly Rainfall from Tropical Rainfall Measuring Mission/Multi-Satellite Precipitation Analysis (TRMM/TMPA) 3B43
2.6. European Space Agency (ESA) Climate Change Initiative (CCI) Annual Land-Cover Maps
3. Methods
- As no in-situ dataset of GW level was available over the study areas, the different datasets of TWS and SM used to anomalies of GW storage were compared to determine if they exhibit similar spatio-temporal patterns in order to increase the confidence in the results related to the time variations of GW.
- The estimates of temporal anomalies of GW storage as the difference between TWS, SM and surface water storage.
3.1. Direct Comparisons of the Different Data Sources
3.2. Groundwater (GW) Storage Anomalies Estimates
- -
- for the mean value at basin-scale [66]:
- -
- for the corresponding volume V [67]:
4. Results
4.1. Direct Comparisons of the Different Datasets
4.2. Groundwater Storage Spatio-Temporal Variations
5. Discussion
5.1. Climate Impacts on Groundwater Storage (GWS)
5.2. Anthropogenic Impacts on GWS
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zektser, I.S.; Loaiciga, H.A. Groundwater fluxes in the global hydrologic cycle: Past, present and future. J. Hydrol. 1993, 144, 405–427. [Google Scholar] [CrossRef]
- Jackson, R.B.; Carpenter, S.R.; Dahm, C.N.; McKnight, D.M.; Naiman, R.J.; Postel, S.L.; Running, S.W. WATER IN A CHANGING WORLD. Ecol. Appl. 2001, 11, 1027–1045. [Google Scholar] [CrossRef]
- Sophocleous, M. Interactions between groundwater and surface water: The state of the science. Hydrogeol. J. 2002, 10, 52–67. [Google Scholar] [CrossRef]
- Griebler, C.; Avramov, M. Groundwater ecosystem services: A review. Freshw. Sci. 2015, 34, 355–367. [Google Scholar] [CrossRef] [Green Version]
- Giordano, M. Global Groundwater? Issues and Solutions. Annu. Rev. Environ. Resour. 2009, 34, 153–178. [Google Scholar] [CrossRef]
- Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for irrigation—a global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef] [Green Version]
- Konikow, L.F.; Kendy, E. Groundwater depletion: A global problem. Hydrogeol. J. 2005, 13, 317–320. [Google Scholar] [CrossRef]
- Gleeson, T.; Wada, Y.; Bierkens, M.F.P.; van Beek, L.P.H. Water balance of global aquifers revealed by groundwater footprint. Nature 2012, 488, 197–200. [Google Scholar] [CrossRef]
- Wada, Y.; van Beek, L.P.H.; Sperna Weiland, F.C.; Chao, B.F.; Wu, Y.-H.; Bierkens, M.F.P. Past and future contribution of global groundwater depletion to sea-level rise. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Gleeson, T.; VanderSteen, J.; Sophocleous, M.A.; Taniguchi, M.; Alley, W.M.; Allen, D.M.; Zhou, Y. Groundwater sustainability strategies. Nat. Geosci. 2010, 3, 378–379. [Google Scholar] [CrossRef]
- Döll, P. Vulnerability to the impact of climate change on renewable groundwater resources: A global-scale assessment. Environ. Res. Lett. 2009, 4, 035006. [Google Scholar] [CrossRef]
- Green, T.R.; Taniguchi, M.; Kooi, H.; Gurdak, J.J.; Allen, D.M.; Hiscock, K.M.; Treidel, H.; Aureli, A. Beneath the surface of global change: Impacts of climate change on groundwater. J. Hydrol. 2011, 405, 532–560. [Google Scholar] [CrossRef] [Green Version]
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground water and climate change. Nat. Clim. Chang. 2013, 3, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. GRACE measurements of mass variability in the Earth system. Science 2004, 305, 503–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tapley, B.D.; Bettadpur, S.; Watkins, M.; Reigber, C. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Frappart, F.; Ramillien, G.; Seoane, L. Monitoring water mass redistributions on land and polar ice sheets using the grace gravimetry from space mission. In Land Surface Remote Sensing in Continental Hydrology; Elsevier: Amsterdam, The Netherlands, 2016; pp. 255–279. ISBN 9780081011812. [Google Scholar]
- Frappart, F.; Ramillien, G. Monitoring groundwater storage changes using the Gravity Recovery and Climate Experiment (GRACE) satellite mission: A review. Remote Sens. 2018, 10, 829. [Google Scholar] [CrossRef] [Green Version]
- Gonçalvès, J.; Petersen, J.; Deschamps, P.; Hamelin, B.; Baba-Sy, O. Quantifying the modern recharge of the “fossil” Sahara aquifers. Geophys. Res. Lett. 2013, 40, 2673–2678. [Google Scholar] [CrossRef]
- Ramillien, G.; Frappart, F.; Seoane, L. Application of the regional water mass variations from GRACE satellite gravimetry to large-scale water management in Africa. Remote Sens. 2014, 6, 7379–7405. [Google Scholar] [CrossRef] [Green Version]
- Gonçalvès, J.; Deschamps, P.; Hamelin, B.; Vallet-Coulomb, C.; Petersen, J.; Chekireb, A. Revisiting recharge and sustainability of the North-Western Sahara aquifers. Reg. Environ. Chang. 2020, 20, 47. [Google Scholar] [CrossRef]
- Yosri, A.M.; Abd-Elmegeed, M.A.; Hassan, A.E. Assessing groundwater storage changes in the Nubian aquifer using GRACE data. Arab. J. Geosci. 2016, 9, 1–9. [Google Scholar] [CrossRef]
- Ahmed, M.; Abdelmohsen, K. Quantifying Modern Recharge and Depletion Rates of the Nubian Aquifer in Egypt. Surv. Geophys. 2018, 39, 729–751. [Google Scholar] [CrossRef]
- Mohamed, A.; Sultan, M.; Ahmed, M.; Yan, E.; Ahmed, E. Aquifer recharge, depletion, and connectivity: Inferences from GRACE, land surface models, and geochemical and geophysical data. Bull. Geol. Soc. Am. 2017, 129, 534–546. [Google Scholar] [CrossRef] [Green Version]
- Sultan, M.; Ahmed, M.; Wahr, J.; Yan, E.; Emil, M.K. Monitoring Aquifer Depletion from Space: Case Studies from the Saharan and Arabian Aquifers. In Remote Sensing of the Terrestrial Water Cycle; Lakshmi, V., Ed.; Wiley: Hoboken, NJ, USA, 2014; pp. 347–366. [Google Scholar]
- Werth, S.; White, D.; Bliss, D.W. GRACE Detected Rise of Groundwater in the Sahelian Niger River Basin. J. Geophys. Res. Solid Earth 2017. [Google Scholar] [CrossRef]
- Pham-Duc, B.; Sylvestre, F.; Papa, F.; Frappart, F.; Bouchez, C.; Crétaux, J.F. The Lake Chad hydrology under current climate change. Sci. Rep. 2020, 10, 5498. [Google Scholar] [CrossRef] [Green Version]
- Nijsten, G.J.; Christelis, G.; Villholth, K.G.; Braune, E.; Gaye, C.B. Transboundary aquifers of Africa: Review of the current state of knowledge and progress towards sustainable development and management. J. Hydrol. Reg. Stud. 2018, 20, 21–34. [Google Scholar] [CrossRef]
- Nabbou, N.; Belhachemi, M.; Merzougui, T.; Harek, Y.; Nasri, B.; Mokadam, I. Ground Water Quality Characterization in the South of Algeria (Tindouf Region)—In Excess Fluorine. In Euro-Mediterranean Conference for Environmental Integration (EMCEI 2017): Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions; Springer: Cham, Switzerland, 2018; pp. 647–651. [Google Scholar]
- Mamou, A.; Besbes, M.; Abdous, B.; Latrech, D.J.; Fezzani, C. North Western Sahara Aquifer System (NWSAS). In Non-Renewable Groundwater Resources: A Guidebook on Socially-Sustainable Management for Water-Policy Makers, IHP-VI Series on Groundwater; UNESCO: Paris, France, 2006; Volume 10, pp. 68–74. [Google Scholar]
- Al-Gamal, S.A. An assessment of recharge possibility to North-Western Sahara Aquifer System (NWSAS) using environmental isotopes. J. Hydrol. 2011, 398, 184–190. [Google Scholar] [CrossRef]
- Besbes, M.; Babasy, M.; Kadri, S.; Latrech, D.; Mamou, A.; Pallas, P.; Zammouri, M. Conceptual framework of the North Western Sahara Aquifer System. In Managing Shared Aquifer Resources in Africa; UNESCO: Paris, France, 2004; pp. 163–169. [Google Scholar]
- Bakhbakhi, M. Nubian sandstone aquifer system. In Non-Renewable Groundwater Resources: A Guidebook on Socially Sustainable Management for Water-Policy Makers, IHP-VI series on groundwater 10; UNESCO: Paris, France, 2006; pp. 75–81. [Google Scholar]
- Salem, O.; Pallas, P. The Nubian Sandstone Aquifer System (NSAS). In Managing Shared Aquifer Resources in Africa; UNESCO: Paris, France, 2004; pp. 19–21. [Google Scholar]
- Gossel, W.; Ebraheem, A.M.; Wycisk, P. A very large scale GIS-based groundwater flow model for the Nubian sandstone aquifer in Eastern Sahara (Egypt, northern Sudan and eastern Libya). Hydrogeol. J. 2004, 12, 698–713. [Google Scholar] [CrossRef]
- IGRAC (International Groundwater Resources Assessment Centre); U.-I. (UNESCO I.H.P). Transboundary Aquifers of the World Map 2015 | International Groundwater Resources Assessment Centre. Available online: https://www.un-igrac.org/resource/transboundary-aquifers-world-map-2015 (accessed on 1 April 2020).
- Sabaka, T.J.; Rowlands, D.D.; Luthcke, S.B.; Boy, J.P. Improving global mass flux solutions from Gravity Recovery and Climate Experiment (GRACE) through forward modeling and continuous time correlation. J. Geophys. Res. Solid Earth 2010, 115, B11403. [Google Scholar] [CrossRef]
- Save, H.; Bettadpur, S.; Tapley, B.D. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth 2016, 121, 7547–7569. [Google Scholar] [CrossRef]
- Cheng, M.K.; Ries, J.C.; Tapley, B.D. Geocenter Variations from Analysis of SLR Data. In International Association of Geodesy Symposia; Springer: Berlin/Heidelberg, Germany, 2013; Volume 138, pp. 19–25. [Google Scholar]
- Peltier, W.R.; Argus, D.F.; Drummond, R. Space geodesy constrains ice age terminal deglaciation: The global ICE-6G-C (VM5a) model. J. Geophys. Res. Solid Earth 2015, 120, 450–487. [Google Scholar] [CrossRef] [Green Version]
- CSR GRACE/GRACE-FO RL06 Mascon Solutions (Version 02). Available online: http://www2.csr.utexas.edu/grace/RL06_mascons.html (accessed on 21 July 2020).
- Wiese, D.N.; Yuan, D.N.; Boening, C.; Landerer, F.W.; Watkins, M.M. JPL GRACE Mascon Ocean, Ice, and Hydrology Equivalent Water Height Release 06 Coastal Resolution Improvement (CRI) Filtered Version 1.0; DAAC: Pasadena, CA, USA, 2018.
- GRACE Tellus Monthly Mass Grids—Global Mascons (JPL RL06_v02). Available online: https://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons/ (accessed on 21 July 2020).
- Wiese, D.N.; Landerer, F.W.; Watkins, M.M. Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Water Resour. Res. 2016, 52, 7490–7502. [Google Scholar] [CrossRef]
- Miralles, D.G.; Holmes, T.R.H.; De Jeu, R.A.M.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef] [Green Version]
- Martens, B.; Miralles, D.G.; Lievens, H.; Van Der Schalie, R.; De Jeu, R.A.M.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E.C. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef] [Green Version]
- Frappart, F.; Wigneron, J.-P.; Li, X.; Liu, X.; Al-Yaari, A.; Fan, L.; Wang, M.; Moisy, C.; Le Masson, E.; Aoulad Lafkih, Z.; et al. Global Monitoring of the Vegetation Dynamics from the Vegetation Optical Depth (VOD): A Review. Remote Sens. 2020, 12, 2915. [Google Scholar] [CrossRef]
- Gash, J.H.C. An analytical model of rainfall interception by forests. Q. J. R. Meteorol. Soc. 1979, 105, 43–55. [Google Scholar] [CrossRef]
- ESA; Vrije Universiteit Amsterdam, G.U. GLEAM: Global Land Evaporation Amsterdam Model. Available online: https://www.gleam.eu/#datasets (accessed on 21 July 2020).
- Hydroweb. Available online: http://hydroweb.theia-land.fr/ (accessed on 6 April 2020).
- Crétaux, J.F.; Jelinski, W.; Calmant, S.; Kouraev, A.; Vuglinski, V.; Bergé-Nguyen, M.; Gennero, M.C.; Nino, F.; Abarca Del Rio, R.; Cazenave, A.; et al. SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Adv. Space Res. 2011, 47, 1497–1507. [Google Scholar]
- Bergé-Nguyen, M.; Crétaux, J.-F. Inundations in the Inner Niger Delta: Monitoring and Analysis Using MODIS and Global Precipitation Datasets. Remote Sens. 2015, 7, 2127–2151. [Google Scholar] [CrossRef] [Green Version]
- Baup, F.; Frappart, F.; Maubant, J. Use of satellite altimetry and imagery for monitoring the volume of small lakes. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014. [Google Scholar]
- Crétaux, J.-F.; Biancamaria, S.; Arsen, A.; Bergé Nguyen, M.; Becker, M. Global surveys of reservoirs and lakes from satellites and regional application to the Syrdarya river basin. Environ. Res. Lett. 2015, 10, 015002. [Google Scholar] [CrossRef] [Green Version]
- Crétaux, J.F.; Abarca-del-Río, R.; Bergé-Nguyen, M.; Arsen, A.; Drolon, V.; Clos, G.; Maisongrande, P. Lake Volume Monitoring from Space. Surv. Geophys. 2016, 37, 269–305. [Google Scholar] [CrossRef] [Green Version]
- Frappart, F.; Biancamaria, S.; Normandin, C.; Blarel, F.; Bourrel, L.; Aumont, M.; Azemar, P.; Vu, P.-L.; Le Toan, T.; Lubac, B.; et al. Influence of recent climatic events on the surface water storage of the Tonle Sap Lake. Sci. Total Environ. 2018, 636, 1520–1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G.; Nelkin, E.J.; Bowman, K.P.; Hong, Y.; Stocker, E.F.; Wolff, D.B. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Nelkin, E.J. The TRMM Multi-satellite Precipitation Analysis (TMPA). In Satellite Rainfall Applications for Surface Hydrology; Springer: Dordrecht, The Netherlands, 2010; pp. 3–22. ISBN 9789048129140. [Google Scholar]
- NASA-Earth Data Ges Disc. 2018. Available online: https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_7/summary (accessed on 21 July 2020).
- Defourny, P.; Vancutsem, C.; Bicheron, C.; Brockmann, C.; Nino, F.; Schouten, L.; Leroy, M. GlobCover: A 300M Global Land Cover Product for 2005 Using ENVISAT MERIS Time Series. In Proceedings of the ISPRS Commission VII Symposium Remote Sensing: From Pixels to Processes, Enschede, The Netherlands, 8–11 May 2007. [Google Scholar]
- ESA. Land Cover CCI Product User Guide Version 2.4; ESA: Paris, France, 2014. [Google Scholar]
- ESA. ESA/CCI Viewer. Available online: https://maps.elie.ucl.ac.be/CCI/viewer/ (accessed on 14 September 2020).
- Di Gregorio, A. Land Cover Classification System; Food and Agriculture Organization: Rome, Italy, 2016; ISBN 9251053278. [Google Scholar]
- Liu, X.; Yu, L.; Li, W.; Peng, D.; Zhong, L.; Li, L.; Xin, Q.; Lu, H.; Yu, C.; Gong, P. Comparison of country-level cropland areas between ESA-CCI land cover maps and FAOSTAT data. Int. J. Remote Sens. 2018, 39, 6631–6645. [Google Scholar] [CrossRef]
- Grippa, M.; Kergoat, L.; Frappart, F.; Araud, Q.; Boone, A.; De Rosnay, P.; Lemoine, J.M.; Gascoin, S.; Balsamo, G.; Ottlé, C.; et al. Land water storage variability over West Africa estimated by Gravity Recovery and Climate Experiment (GRACE) and land surface models. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Ramillien, G.; Frappart, F.; Güntner, A.; Ngo-Duc, T.; Cazenave, A.; Laval, K. Time variations of the regional evapotranspiration rate from Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef] [Green Version]
- Ramillien, G.; Frappart, F.; Cazenave, A.; Güntner, A. Time variations of land water storage from an inversion of 2 years of GRACE geoids. Earth Planet. Sci. Lett. 2005, 235, 283–301. [Google Scholar] [CrossRef] [Green Version]
- Trambauer, P.; Dutra, E.; Maskey, S.; Werner, M.; Pappenberger, F.; Van Beek, L.P.H.; Uhlenbrook, S. Comparison of different evaporation estimates over the African continent. Hydrol. Earth Syst. Sci. 2014, 18, 193–212. [Google Scholar] [CrossRef] [Green Version]
- Allies, A.; Demarty, J.; Olioso, A.; Moussa, I.B.; Issoufou, H.B.A.; Velluet, C.; Bahir, M.; Maïnassara, I.; Oï, M.; Chazarin, J.P.; et al. Evapotranspiration estimation in the sahel using a new ensemble-contextual method. Remote Sens. 2020, 12, 380. [Google Scholar] [CrossRef] [Green Version]
- Martens, B.; Miralles, D.; Lievens, H.; Fernández-Prieto, D.; Verhoest, N.E.C. Improving terrestrial evaporation estimates over continental Australia through assimilation of SMOS soil moisture. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 146–162. [Google Scholar] [CrossRef]
- Crétaux, J.-F.; Nielsen, K.; Frappart, F.; Papa, F.; Calmant, S.; Benveniste, J. Hydrological applications of satellite altimetry: Rivers, lakes, man-made reservoirs, inundated areas. In Satellite Altimetry Over Oceans and Land Surfaces; Stammer, D., Cazenave, A., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 459–504. [Google Scholar]
- Remini, B.; Abidi Saad, N. The Foggara of Tindou (Algeria): A hydraulic Heritage Declined. LARHYSS J. 1112-3680 / 2602-7828. 2019, Volume 39, pp. 215–228. Available online: http://larhyss.net/ojs/index.php/larhyss/article/view/679 (accessed on 23 September 2020).
- Abuzeid, K.; Elrawady, M. North Western Sahara Aquifer System NWSAS (2012) State of The Water Report; CEDARE: Cairo, Egypt, 2012. [Google Scholar]
- Almulla, Y.; Ramirez, C.; Pegios, K.; Korkovelos, A.; De, L. A GIS-based approach to inform agriculture-water-energy nexus management in the North Western Sahara Aquifer System (NWSAS). Sustainability 2020, 12, 7043. [Google Scholar] [CrossRef]
- The North Western Sahara Aquifer System, Syntheses Collection No.1. Available online: http://www.oss-online.org/sites/default/files/publications/OSS-SASS-CSn1_En.pdf (accessed on 10 September 2020).
- Sefelnasr, A.M. Development of Groundwater Flow Model for Water Resources Management in the Development Areas of the Western Desert, Egypt. Ph.D. Thesis, Martin Luther University, Halle, Germany, 2007. [Google Scholar]
- Mohamed Ibrahem, S.M. Effects of groundwater over-pumping on the sustainability of the Nubian Sandstone Aquifer in East-Oweinat Area, Egypt. NRIAG J. Astron. Geophys. 2019, 8, 117–130. [Google Scholar] [CrossRef] [Green Version]
- Hamad, S.M.; Ahweej, Y.A. Evaluation of the Nubian sandstone aquifer system (NSAS) in Al Kufra Oasis, Southeast Libya. Desalin. WATER Treat. 2020, 176, 105–113. [Google Scholar] [CrossRef]
- Elsheikh, A.E. Mitigation of groundwater level deterioration of the Nubian Sandstone aquifer in Farafra Oasis, Western Desert, Egypt. Environ. Earth Sci. 2015, 74, 2351–2367. [Google Scholar] [CrossRef]
- Quadri, E. The evolving framework for transboundary cooperation in the Nubian Sandstone Aquifer System. Water Int. 2019, 44, 363–377. [Google Scholar] [CrossRef]
Aquifer System | Parameter | Data Sources | Bias (mm) | Bias (km3) | RMSD (mm) | RMSD (km3) | RRMSD (%) | R |
---|---|---|---|---|---|---|---|---|
TAS | SM | GLEAM3.3a/3.3b | 0.37 | 0.07 | 0.45 | 0.08 | 11.7 | 1.00 |
TAS | TWS | CSR/JPL CRI | 2.79 | 0.53 | 10.41 | 1.92 | 45.2 | 0.50 |
TAS | TWS | CSR/JPL | 2.77 | 0.62 | 10.35 | 1.91 | 45.0 | 0.51 |
TAS | TWS | JPL CRI/JPL | 0.02 | 0.00 | 0.26 | 0.05 | 1.8 | 0.99 |
NWSAS | SM | GLEAM3.3a/3.3b | 0.59 | 0.61 | 0.49 | 0.52 | 13.6 | 1.00 |
NWSAS | TWS | CSR/JPL CRI | 2.56 | 2.72 | 6.30 | 6.63 | 34.0 | 0.91 |
NWSAS | TWS | CSR/JPL | 2.46 | 2.61 | 6.01 | 6.32 | 31.8 | 0.91 |
NWSAS | TWS | JPL CRI/JPL | 0.11 | 0.11 | 0.98 | 1.03 | 6.7 | 1.00 |
NSAS | SM | GLEAM3.3a/3.3b | 0.13 | 0.33 | 0.10 | 0.25 | 13.9 | 1.00 |
NSAS | TWS | CSR/JPL CRI | −0.80 | −1.94 | 6.51 | 16.01 | 36.2 | 0.83 |
NSAS | TWS | CSR/JPL | −1.17 | −2.87 | 6.33 | 15.57 | 34.9 | 0.85 |
NSAS | TWS | JPL CRI/JPL | 0.38 | 0.93 | 1.30 | 3.22 | 9.2 | 0.99 |
Aquifer System | Parameter | Bias (km3) | RMSD (km3) | R |
---|---|---|---|---|
TAS | GW | 0.06 | 1.76 | 0.51 |
TAS | GW trend | 0.04 | 1.10 | 0.61 |
NWSAS | GW | 0.61 | 6.25 | 0.92 |
NWSAS | GW trend | 0.48 | 4.50 | 0.98 |
NSAS | GW | −0.41 | 14.43 | 0.84 |
NSAS | GW trend | −0.18 | 7.8 | 0.95 |
Aquifer System | Parameter | R (ΔT (Year)) | |||||
---|---|---|---|---|---|---|---|
P | ET | P − ET | |||||
CSR | JPL-CRI | CSR | JPL-CRI | CSR | JPL-CRI | ||
TAS | GW | 0.65 * (+1) | 0.29 *** (+1) | 0.46 ** (+1) | 0.21 *** (+1) | 0.73 * (+1) | 0.32 *** (+1) |
TAS | GW smoothed | 0.66 * (+1) | 0.28 *** (+1) | 0.48 ** (+1) | 0.21 *** (+1) | 0.74 * (+1) | 0.31 *** (+1) |
NWSAS | GW | 0.60 * (0/+1) | 0.66 * (0) | 0.47 ** (0) | 0.47 ** (0) | 0.60 * (0/+1) | 0.66 * (0) |
NWSAS | GW smoothed | 0.60 * (0/+1) | 0.67 * (0) | 0.48 ** (+1) | 0.46 ** (0) | 0.60 * (0/+1) | 0.67 * (0) |
NSAS | GW | 0.07 ● (0) | 0.07 ● (0) | 0.00 ● (0) | 0.00 ● (0) | 0.09 ● (0) | 0.09 ● (0) |
NSAS | GW smoothed | 0.04 ● (0) | 0.04 ● (0) | −0.03 ● (0) | −0.03 ● (0) | 0.06 ● (0) | 0.06 ● (0) |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frappart, F. Groundwater Storage Changes in the Major North African Transboundary Aquifer Systems during the GRACE Era (2003–2016). Water 2020, 12, 2669. https://doi.org/10.3390/w12102669
Frappart F. Groundwater Storage Changes in the Major North African Transboundary Aquifer Systems during the GRACE Era (2003–2016). Water. 2020; 12(10):2669. https://doi.org/10.3390/w12102669
Chicago/Turabian StyleFrappart, Frédéric. 2020. "Groundwater Storage Changes in the Major North African Transboundary Aquifer Systems during the GRACE Era (2003–2016)" Water 12, no. 10: 2669. https://doi.org/10.3390/w12102669
APA StyleFrappart, F. (2020). Groundwater Storage Changes in the Major North African Transboundary Aquifer Systems during the GRACE Era (2003–2016). Water, 12(10), 2669. https://doi.org/10.3390/w12102669