Climate Change Impact on Spatiotemporal Hotspots of Hydrologic Ecosystem Services: A Case Study of Chinan Catchment, Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST)
2.3. Local Indicators of Spatial Association (LISA)
2.4. Climate Change Scenario and Models
3. Results
3.1. InVEST Analysis Results for the Effect of Climate Change on Hydrologic Ecosystem Services
3.2. Spatial Distribution of Hotspots Identified Using LISA
4. Discussion
4.1. Comparison of Changes to Hydrologic Ecosystem Services within and among Years
4.2. Suitability of Various Circulation Models for Small Areas
4.3. LISA Results Helped Identify the Spatial-Distribution Characteristics of Hotspots
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grafton, R.Q.; Garrick, D.; Manero, A.; Do, T.N. The Water Governance Reform Framework: Overview and Applications to Australia, Mexico, Tanzania, USA and Vietnam. Water 2019, 11, 137. [Google Scholar] [CrossRef]
- Crossman, N.D.; Bryan, B.A.; de Groot, R.S.; Lin, Y.P.; Minang, P.A. Land science contributions to ecosystem services. Curr. Opin. Environ. Sustain. 2013, 5, 509–514. [Google Scholar] [CrossRef]
- Grizzetti, B.; Lanzanova, D.; Liquete, C.; Reynaud, A.; Cardoso, A.C. Assessing water ecosystem services for water resource management. Environ. Sci. Policy 2016, 61, 194–203. [Google Scholar] [CrossRef] [Green Version]
- Brauman, K.A.; Daily, G.C.; Duarte, T.K.; Mooney, H.A. The nature and value of ecosystem services: An overview highlighting hydrologic services. Annu. Rev. Environ. Resour. 2007, 32, 67–98. [Google Scholar] [CrossRef]
- Keeler, B.L.; Polasky, S.; Brauman, K.A.; Johnson, K.A.; Finlay, J.C.; O’Neill, A.; Kovacs, K.; Dalzell, B. Linking water quality and well-being for improved assessment and valuation of ecosystem services. PNAS 2012, 109, 18619–18624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, Y.; Zheng, H.; Ouyang, Z.Y.; Zhuang, C.W.; Jiang, B. Modeling hydrological ecosystem services and tradeoffs: A case study in Baiyangdian watershed, China. Environ. Earth. Sci. 2013, 70, 709–718. [Google Scholar] [CrossRef]
- Qiu, J.X.; Turner, M.G. Importance of landscape heterogeneity in sustaining hydrologic ecosystem services in an agricultural watershed. Ecosphere 2015, 6, 1–19. [Google Scholar] [CrossRef]
- Bonnesoeur, V.; Locatelli, B.; Guariguata, M.R.; Ochoa-Tocachi, B.F.; Vanacker, V.; Mao, Z.; Stokes, A.; Mathez-Stiefel, S.-L. Impacts of forests and forestation on hydrological services in the Andes: A systematic review. For. Ecol. Manag. 2019, 433, 569–584. [Google Scholar] [CrossRef]
- Harrison-Atlas, D.; Theobald, D.M.; Goldstein, J.H. A systematic review of approaches to quantify hydrologic ecosystem services to inform decision-making. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2016, 12, 160–171. [Google Scholar] [CrossRef]
- Pan, F.; Choi, W. A Conceptual Modeling Framework for Hydrologic Ecosystem Services. Hydrology 2019, 6, 14. [Google Scholar] [CrossRef]
- Daily, G. Nature’s Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Millennium Ecosystem Assessment. Living beyond our means: Natural assets and human well-being. 2005. Available online: http://www.millenniumassessment.org/documents/document.429.aspx.pdf (accessed on 1 July 2016).
- Duku, C.; Rathjens, H.; Zwart, S.J.; Hein, L. Towards ecosystem accounting: A comprehensive approach to modelling multiple hydrological ecosystem services. Hydrol. Earth Syst. Sci. 2015, 19, 4377–4396. [Google Scholar] [CrossRef]
- Kull, C.A.; de Sartre, X.A.; Castro-Larranaga, M. The political ecology of ecosystem services. Geoforum 2015, 61, 122–134. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; ONeill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Acharya, G. Approaches to valuing the hidden hydrological services of wetland ecosystems. Ecol. Econ. 2000, 35, 63–74. [Google Scholar] [CrossRef]
- Munoz-Pina, C.; Guevara, A.; Torres, J.M.; Brana, J. Paying for the hydrological services of Mexico’s forests: Analysis, negotiations and results. Ecol. Econ. 2008, 65, 725–736. [Google Scholar] [CrossRef]
- Garcia, X.; Barcelo, D.; Comas, J.; Corominas, L.; Hadjimichael, A.; Page, T.J.; Acuna, V. Placing ecosystem services at the heart of urban water systems management. Sci. Total Environ. 2016, 563, 1078–1085. [Google Scholar] [CrossRef]
- Karabulut, A.; Egoh, B.N.; Lanzanova, D.; Grizzetti, B.; Bidoglio, G.; Pagliero, L.; Bouraoui, F.; Aloe, A.; Reynaud, A.; Maes, J.; et al. Mapping water provisioning services to support the ecosystem-water-food-energy nexus in the Danube river basin. Ecosyst. Serv. 2016, 17, 278–292. [Google Scholar] [CrossRef]
- Cook, B.R.; Spray, C.J. Ecosystem services and integrated water resource management: Different paths to the same end? J. Environ. Manag. 2012, 109, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Jewitt, G. Can integrated water resources management sustain the provision of ecosystem goods and services? Phys. Chem. Earth 2002, 27, 887–895. [Google Scholar] [CrossRef]
- Lin, Y.P.; Lin, W.C.; Li, H.Y.; Wang, Y.C.; Hsu, C.C.; Lien, W.Y.; Anthony, J.; Petway, J.R. Integrating Social Values and Ecosystem Services in Systematic Conservation Planning: A Case Study in Datuan Watershed. Sustainability 2017, 9, 718. [Google Scholar] [CrossRef]
- Bouraoui, F.; Galbiati, L.; Bidoglio, G. Climate change impacts on nutrient loads in the Yorkshire Ouse catchment (UK). Hydrol. Earth Syst. Sci. 2002, 6, 197–209. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.P.; Hong, N.M.; Wu, P.J.; Wu, C.F.; Verburg, P.H. Impacts of land use change scenarios on hydrology and land use patterns in the Wu-Tu watershed in Northern Taiwan. Landscape Urban Plann. 2007, 80, 111–126. [Google Scholar] [CrossRef]
- Lin, Y.P.; Hong, N.M.; Chiang, L.C.; Liu, Y.L.; Chu, H.J. Adaptation of Land-Use Demands to the Impact of Climate Change on the Hydrological Processes of an Urbanized Watershed. Int. J. Environ. Res. Publ. Health 2012, 9, 4083–4102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, M.; Shibata, H.; Wang, Q. Optimal conservation planning of multiple hydrological ecosystem services under land use and climate changes in Teshio river watershed, northernmost of Japan. Ecol. Indic. 2016, 62, 1–13. [Google Scholar] [CrossRef]
- Lin, Y.P.; Petway, J.R.; Lien, W.Y.; Settele, J. Blockchain with Artificial Intelligence to Efficiently Manage Water Use under Climate Change. Environments 2018, 5, 34. [Google Scholar] [CrossRef]
- Ludwig, F.; van Slobbe, E.; Cofino, W. Climate change adaptation and Integrated Water Resource Management in the water sector. J. Hydrol. 2014, 518, 235–242. [Google Scholar] [CrossRef]
- Anderson, E.P.; Marengo, J.; Villalba, R.; Halloy, S.; Young, B.; Cordero, D.; Gast, F.; Jaimes, E.; Ruiz, D. Consequences of Climate Change for Ecosystems and Ecosystem Services in the Tropical Andes. In Climate Change Effects on the Biodiversity of the Tropical Andes: An Assessment of the Status of Scientific Knowledge; Herzog, S.K., Martinez, R., Jorgensen, P.M., Tiessen, H., Eds.; Inter-American Institute of Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE): São José dos Campos, Brazil, 2011; pp. 1–18. [Google Scholar]
- Wang, H.; Zhou, S.L.; Li, X.B.; Liu, H.H.; Chi, D.K.; Xu, K.K. The influence of climate change and human activities on ecosystem service value. Ecol. Eng. 2016, 87, 224–239. [Google Scholar] [CrossRef]
- Liu, Z.; Yao, Z.; Huang, H.; Wu, S.; Liu, G. Land Use and Climate Changes and Their Impacts on Runoff in the Yarlung Zangbo River Basin, China. Land Degrad. Dev. 2014, 25, 203–215. [Google Scholar] [CrossRef]
- Lopez-Moreno, J.I.; Vicente-Serrano, S.M.; Moran-Tejeda, E.; Zabalza, J.; Lorenzo-Lacruz, J.; Garcia-Ruiz, J.M. Impact of climate evolution and land use changes on water yield in the ebro basin. Hydrol. Earth Syst. Sci. 2011, 15, 311–322. [Google Scholar] [CrossRef] [Green Version]
- Bangash, R.F.; Passuello, A.; Sanchez-Canales, M.; Terrado, M.; Lopez, A.; Elorza, F.J.; Ziv, G.; Acuna, V.; Schuhmacher, M. Ecosystem services in Mediterranean river basin: Climate change impact on water provisioning and erosion control. Sci. Total Environ. 2013, 458, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Bates, B.C.; Kundzewicz, Z.W.; Wu, S.; Palutikof, J.P. Climate Change and Water, Technical Paper (VI) of the Intergovernmental Panel on Climate Change; IPCC Secretariat: Geneva, Switzerland, 2008. [Google Scholar]
- Broecker, W.S. Thermohaline circulation, the Achilles heel of our climate system: Will man-made CO2 upset the current balance? Science 1997, 278, 1582–1588. [Google Scholar] [CrossRef]
- Water Resources Agency. Taiwan Water Resources Manager Program in Eastern Region and Outlying Islands; Water Resources Agency, Ministry of Economic Affairs: Taichung, Taiwan, 2017. (In Chinese)
- Peng, L.C.; Lien, W.Y.; Lin, W.C.; Ho, C.C.; Hong, N.M.; Lin, Y.P. Using IGDT Method to Select Appropriate Plan for Water Resource Management. J. Taiwan Agric. Eng. 2017, 63, 22–34. [Google Scholar]
- Haith, D.A.; Shoenaker, L.L. Generalized Watershed Loading Functions for Stream Flow Nutrients 1. JAWRA 1987, 23, 471–478. [Google Scholar] [CrossRef]
- Forrester, J.W. Industrial Dynamics; Pegasus Communications: Waltham, MA, USA, 1961. [Google Scholar]
- Peng, L.C.; Chen, G.W.; Lien, W.Y.; Lin, Y.P. Impact analysis on hydrological services under future prediction of global climate change: A case in eastern Taiwan. In Proceedings of the EGU General Assembly Conference, Vienna, Austria, 8–13 April 2018. poster #3599. [Google Scholar]
- Water Resources Planning Institute. Strengthening Water Supply System Adaptive Capacity to Climate Change in Eastern Region; Water Resources Planning Institute, Water Resources Agency, Ministry of Economic Affairs: Taichung, Taiwan, 2012. (In Chinese)
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R. InVEST 3.0. 1 User’s Guide; Available online: https://naturalcapitalproject.stanford.edu/invest/ (accessed on 10 May 2017).
- Bagstad, K.J.; Semmens, D.J.; Waage, S.; Winthrop, R. A comparative assessment of decision-support tools for ecosystem services quantification and valuation. Ecosyst. Serv. 2013, 5, E27–E39. [Google Scholar] [CrossRef]
- National Land Surveying and Mapping Center. Land use map. Available online: http://www.nlsc.gov.tw/Land (accessed on 5 August 2017).
- Soil and Water Conservation Bureau. Soil and Water Conservation Handbook; Soil and Water Conservation Bureau, Council of Agriculture, Executive Yuan, Chinese of Soil and Water Conservation Society: Nantou, Taiwan, 2005. (In Chinese)
- Wen, C.-G.; Chang, C.-H. Non-point Pollution of Nitrogen and Phosphorus from Agriculture in Taiwan. In Proceedings of the Conference on Non-point Pollution from Agriculture, Taichung, Taiwan, 24 November 2008. (In Chinese). [Google Scholar]
- Anselin, L. Local Indicators of Spatial Association—Lisa. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Lay, J.-G.; Yap, K.-H.; Wang, W. Exploring Land Use Changes and Spatial Dependence a Case Study of Settlement Changes in the Taipei Basin. Taiwan Georaphic Inf. Sci. 2004, 1, 29–40. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Li, C.K. The Industrial Spatial Cluster around the University. Master’s Thesis, National Cheng-Kung University, Tainan, Taiwan, 2012. (In Chinese). [Google Scholar]
- Stocker, T. Climate Change 2013: The Physical Science Basis: Working Group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Lin, C.Y.; Tung, C.P. Procedure for selecting GCM datasets for climate risk assessment. Terr. Atmos. Ocean Sci. 2017, 28, 43–55. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.H. The nitrogen and phosphorus of Climate Change in the Reservoir Watersheds. Master’s Thesis, National Central University, Taoyuan, Taiwan, 2007. (In Chinese). [Google Scholar]
- Krkoška Lorencová, E.; Harmáčková, Z.V.; Landová, L.; Pártl, A.; Vačkář, D. Assessing impact of land use and climate change on regulating ecosystem services in the Czech Republic. Ecosyst. Health Sustainability 2016, 2, e01210. [Google Scholar] [CrossRef]
- Xiao, Y.; Xiao, Q. Identifying key areas of ecosystem services potential to improve ecological management in Chongqing City, southwest China. Environ. Monit. Assess. 2018, 190. [Google Scholar] [CrossRef]
- Baek, H.J.; Lee, J.; Lee, H.S.; Hyun, Y.K.; Cho, C.; Kwon, W.T.; Marzin, C.; Gan, S.Y.; Kim, M.J.; Choi, D.H. Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways. Asia-Pac. J. Atmos. Sci. 2013, 49, 603–618. [Google Scholar] [CrossRef]
- Chiang, L.C.; Lin, Y.P.; Huang, T.; Schmeller, D.S.; Verburg, P.H.; Liu, Y.L.; Ding, T.S. Simulation of ecosystem service responses to multiple disturbances from an earthquake and several typhoons. Landscape Urban Plann. 2014, 122, 41–55. [Google Scholar] [CrossRef]
- Luke, A.; Hack, J. Comparing the Applicability of Commonly Used Hydrological Ecosystem Services Models for Integrated Decision-Support. Sustainability 2018, 10, 346. [Google Scholar] [CrossRef]
- Peng, L.C.; Lien, W.Y.; Lin, W.C.; Ho, C.C.; Hong, N.M.; Lin, Y.P. Finding better adaption plan for water management when facing challenge of water deficiency in response to global climate change. In Proceedings of the American Geophysical Union Fall Meeting, San Francisco, CA, USA, 12–16 December 2016. [Google Scholar]
- Terrado, M.; Acuna, V.; Ennaanay, D.; Tallis, H.; Sabater, S. Impact of climate extremes on hydrological ecosystem services in a heavily humanized Mediterranean basin. Ecol. Indic. 2014, 37, 199–209. [Google Scholar] [CrossRef]
- Liu, S.; Yin, Y.; Cheng, F.; Hou, X.; Dong, S.; Wu, X. Spatio-temporal variations of conservation hotspots based on ecosystem services in Xishuangbanna, Southwest China. Plos One 2017, 12, e0189368. [Google Scholar] [CrossRef] [PubMed]
- Trisurat, Y.; Eawpanich, P.; Kalliola, R. Integrating land use and climate change scenarios and models into assessment of forested watershed services in Southern Thailand. Environ. Res. 2016, 147, 611–620. [Google Scholar] [CrossRef] [PubMed]
- Lutz, A.F.; ter Maat, H.W.; Biemans, H.; Shrestha, A.B.; Wester, P.; Immerzeel, W.W. Selecting representative climate models for climate change impact studies: An advanced envelope-based selection approach. Int. J. Climatol. 2016, 36, 3988–4005. [Google Scholar] [CrossRef]
- Sperber, K.R.; Annamalai, H. The use of fractional accumulated precipitation for the evaluation of the annual cycle of monsoons. Clim. Dyn. 2014, 43, 3219–3244. [Google Scholar] [CrossRef]
- Knutti, R.; Masson, D.; Gettelman, A. Climate model genealogy: Generation CMIP5 and how we got there. Geophys. Res. Lett. 2013, 40, 1194–1199. [Google Scholar] [CrossRef] [Green Version]
- Tung, Y.S.; Wang, S.-Y.S.; Chu, J.L.; Wu, C.H.; Chen, Y.M.; Cheng, C.T.; Lin, L.W. Projected increase of the East Asian summer monsoon (Meiyu) in Taiwan by climate models with variable performance. Meteorol. Appl. 2019, in press. [Google Scholar]
- McSweeney, C.F.; Jones, R.G.; Lee, R.W.; Rowell, D.P. Selecting CMIP5 GCMs for downscaling over multiple regions. Clim. Dyn. 2015, 44, 3237–3260. [Google Scholar] [CrossRef]
- Meehl, G.A.; Washington, W.M.; Arblaster, J.M.; Hu, A.X.; Teng, H.Y.; Kay, J.E.; Gettelman, A.; Lawrence, D.M.; Sanderson, B.M.; Strand, W.G. Climate Change Projections in CESM1(CAM5) Compared to CCSM4. J. Clim. 2013, 26, 6287–6308. [Google Scholar] [CrossRef]
- Maes, J.; Liquete, C.; Teller, A.; Erhard, M.; Paracchini, M.L.; Barredo, J.I.; Grizzetti, B.; Cardoso, A.; Somma, F.; Petersen, J.E.; et al. An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosyst. Serv. 2016, 17, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Kundzewicz, Z.W.; Mata, L.J.; Arnell, N.; Doll, P.; Kabat, P.; Jimenez, B.; Miller, K.; Oki, T.; Zekai, S.; Shiklomanov, I. Freshwater resources and their management. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 173–210. [Google Scholar]
- Rodriguez, N.; Armenteras, D.; Retana, J. National ecosystems services priorities for planning carbon and water resource management in Colombia. Land Use Policy 2015, 42, 609–618. [Google Scholar] [CrossRef]
- Lashkari, A.; Alizadeh, A.; Rezaei, E.E.; Bannayan, M. Mitigation of climate change impacts on maize productivity in northeast of Iran: A simulation study. Mitigation and Adaptation Strategies Glob. Chang. 2012, 17, 1–16. [Google Scholar] [CrossRef]
- Maes, J.; Egoh, B.; Willemen, L.; Liquete, C.; Vihervaara, P.; Schagner, J.P.; Grizzetti, B.; Drakou, E.G.; La Notte, A.; Zulian, G.; et al. Mapping ecosystem services for policy support and decision making in the European Union. Ecosyst. Serv. 2012, 1, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Jones, K.B.; Neale, A.C.; Nash, M.S.; Van Remortel, R.D.; Wickham, J.D.; Riitters, K.H.; O’Neill, R.V. Predicting nutrient and sediment loadings to streams from landscape metrics: A multiple watershed study from the United States Mid-Atlantic Region. Landscape Ecol. 2001, 16, 301–312. [Google Scholar] [CrossRef]
- Trisurat, Y.; Aekakkararungroj, A.; Ma, H.O.; Johnston, J.M. Basin-wide impacts of climate change on ecosystem services in the Lower Mekong Basin. Ecol. Res. 2018, 33, 73–86. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-P.; Chen, C.-J.; Lien, W.-Y.; Chang, W.-H.; Petway, J.R.; Chiang, L.-C. Landscape Conservation Planning to Sustain Ecosystem Services under Climate Change. Sustainability 2019, 11, 1393. [Google Scholar] [CrossRef]
- Lin, Y.-P.; Lin, W.-C.; Wang, Y.-C.; Lien, W.-Y.; Huang, T.; Hsu, C.-C.; Schmeller, D.S.; Crossman, N.D. Systematically designating conservation areas for protecting habitat quality and multiple ecosystem services. Environ. Modell. Softw. 2017, 90, 126–146. [Google Scholar] [CrossRef]
Hydrologic Ecosystem Services | Water Yield (million m3) | Sediment Export (tons) | N Export (kg) | P Export (kg) | |
---|---|---|---|---|---|
Baseline | 46.25 | 511.33 | 364.29 | 22.71 | |
RCP2.6 | CCSM4 | 46.81 | 527.12 | 364.91 | 22.96 |
CESM1-CAM5 | 43.20 | 459.41 | 364.01 | 22.60 | |
GISS-E2-R | 41.90 | 438.39 | 363.98 | 22.58 | |
HadGEM2-AO | 46.97 | 523.26 | 364.16 | 22.69 | |
MIROC5 | 48.02 | 535.00 | 363.73 | 22.48 | |
RCP8.5 | CCSM4 | 45.41 | 514.44 | 365.85 | 23.38 |
CESM1-CAM5 | 49.97 | 568.63 | 363.77 | 22.49 | |
GISS-E2-R | 48.03 | 562.14 | 366.18 | 23.49 | |
HadGEM2-AO | 38.39 | 379.35 | 363.24 | 22.29 | |
MIROC5 | 47.52 | 529.06 | 363.89 | 22.56 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, L.-C.; Lin, Y.-P.; Chen, G.-W.; Lien, W.-Y. Climate Change Impact on Spatiotemporal Hotspots of Hydrologic Ecosystem Services: A Case Study of Chinan Catchment, Taiwan. Water 2019, 11, 867. https://doi.org/10.3390/w11040867
Peng L-C, Lin Y-P, Chen G-W, Lien W-Y. Climate Change Impact on Spatiotemporal Hotspots of Hydrologic Ecosystem Services: A Case Study of Chinan Catchment, Taiwan. Water. 2019; 11(4):867. https://doi.org/10.3390/w11040867
Chicago/Turabian StylePeng, Li-Chun, Yu-Pin Lin, Guan-Wei Chen, and Wan-Yu Lien. 2019. "Climate Change Impact on Spatiotemporal Hotspots of Hydrologic Ecosystem Services: A Case Study of Chinan Catchment, Taiwan" Water 11, no. 4: 867. https://doi.org/10.3390/w11040867
APA StylePeng, L. -C., Lin, Y. -P., Chen, G. -W., & Lien, W. -Y. (2019). Climate Change Impact on Spatiotemporal Hotspots of Hydrologic Ecosystem Services: A Case Study of Chinan Catchment, Taiwan. Water, 11(4), 867. https://doi.org/10.3390/w11040867