Groundwater Level Prediction for the Arid Oasis of Northwest China Based on the Artificial Bee Colony Algorithm and a Back-propagation Neural Network with Double Hidden Layers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Process
2.3. Model Setup
2.3.1. Topology of the BP Neural Network with Double Hidden Layers
2.3.2. Principle of the ABC Algorithm
2.3.3. ABC-BP Neural Network
3. Results and Discussion
3.1. Model Validation
3.1.1. Initialization of Model Parameters
3.1.2. Model Training
3.1.3. Comparison of ABC-BP, PSO-BP, GA-BP and BP Models
3.2. Groundwater Level Prediction under the Existing Mining Scenario
3.3. Groundwater Level Prediction under Different Mining Scenarios
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Edmunds, W.M. Renewable and non-renewable groundwater in semi-arid and arid regions. Dev. Water Sci. 2003, 50, 265–280. [Google Scholar]
- Jiang, L.; Li, P.C.; Hu, A.Y.; Xu, Z.H. The groundwater chemical characteristics in the Yaoba oasis of Alxa area, Inner Mongolia. J. Arid Land Res. Environ. 2009, 23, 105–110. [Google Scholar]
- Chen, L.J.; Feng, Q. Geostatistical analysis of temporal and spatial variations in groundwater levels and quality in the Minqin oasis, Northwest China. Environ. Earth Sci. 2013, 70, 1367–1378. [Google Scholar] [CrossRef]
- Abliz, A.; Tiyip, T.; Ghulam, A.; Halik, Ü.; Ding, J.L.; Sawut, M.; Zhang, F.; Nurmemet, I.; Abliz, A. Effects of shallow groundwater table and salinity on soil salt dynamics in the Keriya oasis, northwestern China. Environ. Earth Sci. 2016, 75, 260. [Google Scholar] [CrossRef]
- Bao, C.; Fang, C.L. Water resources constraint force on urbanization in water deficient regions: A case study of the Hexi Corridor, arid area of NW China. Ecol. Econ. 2007, 62, 508–517. [Google Scholar] [CrossRef]
- Li, P.Y.; Qian, H.; Zhou, W.F. Finding harmony between the environment and humanity: An introduction to the thematic issue of the Silk Road. Environ. Earth Sci. 2017, 76, 105. [Google Scholar] [CrossRef]
- Shang, H.M.; Wang, W.K.; Dai, Z.X.; Duan, L.; Zhao, Y.Q.; Zhang, J. An ecology-oriented exploitation mode of groundwater resources in the northern Tianshan Mountains, China. J. Hydrol. 2016, 543, 386–394. [Google Scholar] [CrossRef]
- Chen, Y.N.; Li, W.H.; Xu, C.C.; Ye, Z.X.; Chen, Y.P. Desert riparian vegetation and groundwater in the lower reaches of the Tarim River basin. Environ. Earth Sci. 2014, 73, 547–558. [Google Scholar] [CrossRef]
- Alcalá, F.J.; Martínez-Valderrama, J.; Robles-Marín, P.; Guerrera, F.; Martín-Martín, M.; Raffaelli, G.; De León, J.T.; Asebriy, L. A hydrological-economic model for sustainable groundwater use in sparse-data drylands: Application to the amtoudi oasis in southern Morocco, northern Sahara. Sci. Total Environ. 2015, 537, 309–322. [Google Scholar] [CrossRef]
- Farnham, I.M.; Stetzenbach, K.J.; Singh, A.K.; Johannesson, K.H. Deciphering groundwater flow systems in oasis Valley, Nevada, using trace element chemistry, multivariate statistics, and geographical information system. Math. Geol. 2000, 32, 943–968. [Google Scholar] [CrossRef]
- Tweed, S.; Leblanc, M.; Cartwright, I.; Favreau, G.; Leduc, C. Arid zone groundwater recharge and salinisation processes; an example from the Lake Eyre Basin, Australia. J. Hydrol. 2011, 408, 257–275. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Bandyopadhyay, G. Artificial neural network with back propagation learning to predict mean monthly total ozone in Arosa, Switzerland. Int. J. Remote Sens. 2007, 28, 4471–4482. [Google Scholar] [CrossRef]
- Olawoyin, R. Application of back propagation artificial neural network prediction model for the PAH bioremediation of polluted soil. Chemosphere 2016, 161, 145–150. [Google Scholar] [CrossRef]
- Mandal, D.; Pal, S.K.; Saha, P. Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-II. J. Mater. Process. Technol. 2007, 186, 154–162. [Google Scholar] [CrossRef]
- Kaveh, A.; Servati, H. Design of double layer grids using back propagation neural networks. Comput. Struct. 2001, 79, 1561–1568. [Google Scholar] [CrossRef]
- Neaupane, K.M.; Achet, S.H. Use of back propagation neural network for landslide monitoring: A case study in the higher Himalaya. Eng. Geol. 2004, 74, 213–226. [Google Scholar] [CrossRef]
- Métivier, M. Stock rate prediction using back propagation algorithm: Results with different number of hidden layers. J. Software Eng. 2007, 1, 13–21. [Google Scholar]
- Haviluddin, S.; Alfred, R. Daily network traffic prediction based on back propagation neural network. Aust. J. Basic and Appl. Sci. 2014, 8, 164–169. [Google Scholar]
- Akpinar, M.; Adak, M.F.; Yumusak, N. Forecasting natural gas consumption with hybrid neural networks-artificial bee colony. In Proceedings of the 2nd International Conference on Intelligent Energy and Power Systems (IEPS), Kyiv, Ukraine, 7–11 June 2016. [Google Scholar]
- Yu, F.; Xu, X.Z. A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network. Appl. Energy 2014, 134, 102–113. [Google Scholar] [CrossRef]
- Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [Google Scholar] [CrossRef]
- Karaboga, D.; Basturk, B. On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 2008, 8, 687–697. [Google Scholar] [CrossRef]
- Karaboga, D.; Akay, B. A survey: Algorithms simulating bee swarm intelligence. Artif. Intell. Rev. 2009, 31, 61–85. [Google Scholar]
- Su, C.H.; Xiang, N.; Chen, G.Y.; Wang, F. Water quality evaluation model based on artificial bee colony algorithm and BP neural network. Chin. J. Environ. Eng. 2012, 6, 699–704. [Google Scholar]
- Bullinaria, J.A.; Alyahya, K. Artificial bee colony training of neural networks: Comparison with back-propagation. Memetic Comp. 2014, 6, 171–182. [Google Scholar] [CrossRef]
- Irani, R.; Nasimi, R. Application of artificial bee colony-based neural network in bottom hole pressure prediction in underbalanced drilling. J. Pet. Sci. Eng. 2011, 78, 6–12. [Google Scholar] [CrossRef]
- Karaboga, D.; Akay, B. A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 2009, 214, 108–132. [Google Scholar] [CrossRef]
- Garro, B.A.; Sossa, H.; Vazquez, R.A. Artificial neural network synthesis by means of artificial bee colony (ABC) algorithm. 2011 IEEE Congress of Evolutionary Computation (CEC) 2011, 30, 331–338. [Google Scholar]
- Nandy, S.; Sarkar, P.P.; Das, A. Training a feed-forward neural network with artificial bee colony based back propagation method. Int. J. Comput. Sci. Inf. Technol. 2012, 4, 652. [Google Scholar]
- Ozturk, C.; Karaboga, D. Hybrid artificial bee colony algorithm for neural network training. In Proceedings of the 2011 IEEE Congress of Evolutionary Computation (CEC), New Orleans, LA, USA, 5–8 June 2011; Volume 30, pp. 84–88. [Google Scholar]
- Qiu, H.X. The Salinization Mechanism of Groundwater and Simulation of Three-dimensional Water Quality, Inner Mongolia; Ocean University of Qingdao: Qingdao, China, 1997. [Google Scholar]
- Cui, G.Q.; Lu, Y.D.; Ce, Z.; Liu, Z.H.; Sai, J.M. Relationship between soil salinization and groundwater hydration in Yaoba Oasis, Northwest China. Water 2019, 11, 175. [Google Scholar] [CrossRef]
- Li, X.G.; Xia, W.; Lu, Y.D. Optimising the allocation of groundwater carrying capacity in a data-scarce region. Water SA 2010, 36, 451–460. [Google Scholar] [CrossRef]
- Zheng, C.; Lu, Y.D.; Guo, X.H.; Li, H.H.; Sai, J.M.; Liu, X.H. Application of HYDRUS-1D model for research on irrigation infiltration characteristics in arid oasis of northwest China. Environ. Earth Sci. 2017, 76, 785. [Google Scholar] [CrossRef]
- Li, Y.; Lu, Y.D.; Li, H.J.; Wang, J.K.; Jiang, L. Groundwater dynamic characteristics and the influence on vegetation variation in the yaoba oasis. Ground Water 2012, 4, 030. [Google Scholar]
- Ismailov, V.E. On the approximation by neural networks with bounded number of neurons in hidden layers. J. Math. Anal. Appl. 2014, 417, 963–969. [Google Scholar] [CrossRef]
- Yang, J.B.; Ni, F.S.; Wei, C.Y.; Zheng, Q.Y. Prediction of cutter-suction dredger production based on double hidden layer BP neural network. Comput. Digital Eng. 2016, 44, 1234–1237. [Google Scholar]
- Ding, H.; Dong, W.Y.; Wu, D.M. Water level prediction based on double hidden layer BP neural network based on LM algorithm. Stat. Decis. 2014, 15, 16–19. [Google Scholar]
- Xu, C.Y.; Xu, C.F. Optimization analysis of dynamic sample number and hidden layer node number based on BP neural network. In Proceedings of the Eighth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), HuangShan, China, 12–14 July 2013; Volume 212, pp. 687–695. [Google Scholar]
- Cui, D.W. Application of hidden multilayer BP neural network model in runoff prediction. J. China Hydrol. 2013, 33, 68–73. [Google Scholar]
- Sedki, A.; Ouazar, D.; El Mazoudi, E. Evolving neural network using real coded Genetic Algorithm for daily rainfall–runoff forecasting. Expert Syst. Appl. 2009, 36, 4523–4527. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, J.; Wang, Q.; Huang, Z.J. The upper bound of the minimal number of hidden neurons for the parity problem in binary neural networks. Sci. China Inf. Sci. 2012, 55, 1579–1587. [Google Scholar] [CrossRef]
- Kacprzyk, J.; Pedrycz, W. Artificial neural network models. Springer Handbook of Computational Intelligence; Springer: Berlin, Germany, 2015; pp. 455–471. [Google Scholar]
- Seeley, T.D. The wisdom of the hive-The social physiology of honey bee colonies. Science 1996, 272, 907–908. [Google Scholar]
- Chen, S.Y.; Fang, G.H.; Huang, X.F.; Zhang, Y.H. Water quality prediction model of a water diversion project based on the improved Artificial bee colony–Backpropagation neural network. Water 2018, 10, 806. [Google Scholar] [CrossRef]
- Akay, B.; Karaboga, D. A modified artificial bee colony algorithm for real-parameter optimization. Inf. Sci. 2012, 192, 120–142. [Google Scholar] [CrossRef]
- Habbi, H.; Boudouaoui, Y.; Karaboga, D.; Ozturk, C. Self-generated fuzzy systems design using artificial bee colony optimization. Inf. Sci. 2015, 295, 145–159. [Google Scholar] [CrossRef]
- Pandey, A.; Srivastava, J.K.; Rajput, N.S.; Prasad, R. Crop parameter estimation of Lady finger by using different neural network training algorithms. Russ. Agric. Sci. 2010, 36, 71–77. [Google Scholar] [CrossRef]
- Saien, J.; Soleymani, A.R.; Bayat, H. Modeling fentonic advanced oxidation process decolorization of direct red 16 using artificial neural network technique. Desalin. Water Treat. 2012, 40, 174–182. [Google Scholar] [CrossRef]
- Taghavifar, H.; Mardani, A.; Mohebbi, A.; Taghavifar, H. Investigating the effect of combustion properties on the accumulated heat release of DI engines at rated EGR levels using the ANN approach. Fuel 2014, 137, 1–10. [Google Scholar] [CrossRef]
- Soleymani, A.R.; Saien, J.; Bayat, H. Artificial neural networks developed for prediction of dye decolorization efficiency with UV/K2S2O8 process. Chem. Eng. J. 2011, 170, 29–35. [Google Scholar] [CrossRef]
- Shah, H.; Tairan, N.; Garg, H.; Ghazali, R. A quick gbest guided Artificial bee colony algorithm for stock market prices prediction. Symmetry 2018, 10, 292. [Google Scholar] [CrossRef]
- Liu, J.Q.; Xie, X.M.; Ma, Z.Z.; Fang, G.H.; He, H.X.; Du, M.Y. A multiple-iterated dual control model for groundwater exploitation and water level based on the optimal allocation model of water resources. Water 2018, 10, 432. [Google Scholar] [CrossRef]
Neurons | Error | Neurons | Error | Neurons | Error | Neurons | Error | Neurons | Error | Neurons | Error | Neurons | Error |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3-3 | 0.86 | 4-3 | 0.76 | 5-3 | 0.57 | 6-3 | 0.34 | 7-3 | 0.01 | 8-3 | 0.13 | 9-3 | 0.22 |
3-4 | 0.83 | 4-4 | 0.71 | 5-4 | 0.41 | 6-4 | 0.27 | 7-4 | 0.03 | 8-4 | 0.19 | 9-4 | 0.26 |
3-5 | 0.76 | 4-5 | 0.65 | 5-5 | 0.38 | 6-5 | 0.23 | 7-5 | 0.06 | 8-5 | 0.24 | 9-5 | 0.30 |
3-6 | 0.70 | 4-6 | 0.63 | 5-6 | 0.23 | 6-6 | 0.12 | 7-6 | 0.14 | 8-6 | 0.29 | 9-6 | 0.38 |
3-7 | 0.65 | 4-7 | 0.48 | 5-7 | 0.20 | 6-7 | 0.07 | 7-7 | 0.19 | 8-7 | 0.34 | 9-7 | 0.47 |
3-8 | 0.57 | 4-8 | 0.45 | 5-8 | 0.16 | 6-8 | 0.04 | 7-8 | 0.25 | 8-8 | 0.42 | 9-8 | 0.53 |
3-9 | 0.52 | 4-9 | 0.32 | 5-9 | 0.13 | 6-9 | 0.02 | 7-9 | 0.29 | 8-9 | 0.46 | 9-9 | 0.56 |
Test Sample | ABC-BP Model | PSO-BP Model | GA-BP Model | BP Model | |||||
---|---|---|---|---|---|---|---|---|---|
Month | Measured Value (m) | Predictive Value (m) | Absolute Error | Predictive Value (m) | Absolute Error | Predictive Value (m) | Absolute Error | Predictive Value (m) | Absolute Error |
2017/1 | 1280.24 | 1280.29 | 0.05 | 1280.43 | 0.19 | 1280.76 | 0.52 | 1279.55 | −0.69 |
2017/2 | 1280.49 | 1280.60 | 0.11 | 1280.95 | 0.46 | 1280.22 | −0.27 | 1280.83 | 0.34 |
2017/3 | 1280.55 | 1280.63 | 0.08 | 1280.71 | 0.16 | 1281.16 | 0.61 | 1281.65 | 1.10 |
2017/4 | 1279.91 | 1279.82 | −0.09 | 1279.54 | −0.37 | 1280.14 | 0.23 | 1279.02 | −0.89 |
2017/5 | 1280.02 | 1279.96 | −0.06 | 1280.56 | 0.54 | 1279.63 | −0.39 | 1280.21 | 0.19 |
2017/6 | 1279.25 | 1279.18 | −0.07 | 1279.42 | 0.17 | 1278.69 | −0.56 | 1280.11 | 0.86 |
2017/7 | 1278.61 | 1278.50 | −0.11 | 1278.20 | −0.41 | 1278.74 | 0.13 | 1279.27 | 0.66 |
2017/8 | 1279.03 | 1278.99 | −0.04 | 1278.82 | −0.21 | 1279.46 | 0.43 | 1279.26 | 0.23 |
2017/9 | 1279.14 | 1279.21 | 0.07 | 1279.32 | 0.18 | 1279.43 | 0.29 | 1278.72 | −0.42 |
2017/10 | 1279.59 | 1279.56 | −0.03 | 1279.34 | −0.25 | 1280.22 | 0.63 | 1279.46 | −0.13 |
2017/11 | 1280.06 | 1280.19 | 0.13 | 1279.74 | −0.32 | 1280.55 | 0.49 | 1280.64 | 0.58 |
2017/12 | 1280.27 | 1280.22 | −0.05 | 1280.55 | 0.28 | 1280.11 | −0.16 | 1280.38 | 0.11 |
2018/1 | 1279.64 | 1279.52 | −0.12 | 1279.95 | 0.31 | 1280.21 | 0.57 | 1279.98 | 0.34 |
2018/2 | 1279.81 | 1279.73 | −0.08 | 1280.28 | 0.47 | 1280.09 | 0.28 | 1279.66 | −0.15 |
2018/3 | 1279.92 | 1279.86 | −0.06 | 1280.05 | 0.13 | 1279.81 | −0.11 | 1280.29 | 0.37 |
2018/4 | 1279.16 | 1279.27 | 0.11 | 1279.25 | 0.09 | 1279.69 | 0.53 | 1279.60 | 0.44 |
2018/5 | 1279.44 | 1279.51 | 0.07 | 1278.93 | −0.51 | 1279.55 | 0.11 | 1279.21 | −0.23 |
2018/6 | 1278.48 | 1278.64 | 0.16 | 1278.74 | 0.26 | 1278.80 | 0.32 | 1277.57 | −0.91 |
2018/7 | 1278.12 | 1278.03 | −0.09 | 1278.47 | 0.35 | 1277.76 | −0.36 | 1278.65 | 0.53 |
2018/8 | 1278.26 | 1278.38 | 0.12 | 1278.15 | −0.11 | 1277.81 | −0.45 | 1278.51 | 0.25 |
2018/9 | 1278.42 | 1278.34 | −0.08 | 1278.72 | 0.30 | 1278.52 | 0.10 | 1279.03 | 0.61 |
2018/10 | 1278.79 | 1278.85 | 0.06 | 1278.64 | −0.15 | 1279.25 | 0.46 | 1278.48 | −0.31 |
2018/11 | 1279.31 | 1279.23 | −0.08 | 1279.55 | 0.24 | 1279.57 | 0.26 | 1279.57 | 0.26 |
2018/12 | 1279.56 | 1279.42 | −0.14 | 1279.99 | 0.43 | 1279.73 | 0.17 | 1279.99 | 0.43 |
Error Representations | Name of Models | |||
---|---|---|---|---|
ABC-BP | PSO-BP | GA-BP | BP | |
R2 | 0.983 | 0.864 | 0.826 | 0.653 |
RMSE | 0.092 | 0.316 | 0.390 | 0.533 |
MAE | 0.086 | 0.288 | 0.352 | 0.460 |
REmax | 0.013 | 0.043 | 0.049 | 0.086 |
Monitoring Well | Location | Variation Range of Groundwater Levels from 2019 to 2030 Under Different Mining Scenarios (m) | ||
---|---|---|---|---|
40 million m3/year | 31 million m3/year | 22 million m3/year | ||
ZB-01 | North Central | −1.31 | 0.13 | 6.73 |
ZB-02 | Central | −2.81 | 0.01 | 7.24 |
ZB-03 | South Central | −5.50 | 0.04 | 5.86 |
ZB-04 | West Central | −1.79 | 0.07 | 8.47 |
ZB-05 | South | −3.52 | 0.13 | 6.64 |
ZB-06 | South | −2.61 | 0.22 | 6.11 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Lu, Y.; Zheng, C.; Yang, M.; Li, S. Groundwater Level Prediction for the Arid Oasis of Northwest China Based on the Artificial Bee Colony Algorithm and a Back-propagation Neural Network with Double Hidden Layers. Water 2019, 11, 860. https://doi.org/10.3390/w11040860
Li H, Lu Y, Zheng C, Yang M, Li S. Groundwater Level Prediction for the Arid Oasis of Northwest China Based on the Artificial Bee Colony Algorithm and a Back-propagation Neural Network with Double Hidden Layers. Water. 2019; 11(4):860. https://doi.org/10.3390/w11040860
Chicago/Turabian StyleLi, Huanhuan, Yudong Lu, Ce Zheng, Mi Yang, and Shuangli Li. 2019. "Groundwater Level Prediction for the Arid Oasis of Northwest China Based on the Artificial Bee Colony Algorithm and a Back-propagation Neural Network with Double Hidden Layers" Water 11, no. 4: 860. https://doi.org/10.3390/w11040860
APA StyleLi, H., Lu, Y., Zheng, C., Yang, M., & Li, S. (2019). Groundwater Level Prediction for the Arid Oasis of Northwest China Based on the Artificial Bee Colony Algorithm and a Back-propagation Neural Network with Double Hidden Layers. Water, 11(4), 860. https://doi.org/10.3390/w11040860