Irrigation Management Based on Reservoir Operation with an Improved Weed Algorithm
Abstract
:1. Introduction
1.1. Background
1.2. Innovation and Objectives
2. Method
2.1. Weed Algorithm (WA)
- A limited number of seeds can grow in the environment.
- The seeds can grow and become weeds to continue the next generation.
- The growth process and generation of seeds and weeds continue until the number of seeds reaches a maximum number.The algorithm is considered based on the following levels:
2.1.1. Initialization
2.1.2. Reproduction
2.1.3. Spatial Dispersal
2.1.4. Competitive Selection
2.2. Improved Weed Algorithm (IWA)
2.3. Bat Algorithm (BA)
- The echolocation ability is used by all bats so that they can identify an obstacle in their surroundings.
- Bats have random velocity () at a random position (yl) and the frequency, wavelength and loudness for the BA are , and A, respectively.
- The loudness varies for the bats from a large positive to a small positive.
2.4. Improved Particle Swarm Optimization Algorithm (IPSOA)
2.5. Genetic Algorithm (GA)
3. Case Study
Model Performance Indicators
- The released water is considered as a decision variable and is defined based on the initial population of weeds.
- The continuity equation is computed and the reservoir storage is computed for each release decision variable.
- The constraints for each variable are computed and the penalty functions are computed if the constraints are not satisfied.
- The objective function is computed for each member.
- The number of seeds generated by each weed is computed.
- The standard deviation for spatial dispersal is calculated.
- A local search for an elite weed is carried out.
- The best weed is updated
- If the convergence criterion is satisfied, the algorithm finishes; otherwise, the algorithm returns to the second step.
4. Results and Discussion
4.1. Sensitivity Analysis
4.2. Analysis of 10 Random Results for Different Algorithms
4.3. Convergence Curves for Different Algorithms
4.4. Analysis of Monthly Rule Curves for Reservoir Operation
4.5. Analysis of Different Algorithms for Reservoir Operation during Total Operation Periods
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Srinivasan, K.; Kumar, K. Multi-objective simulation-optimization model for long-term reservoir operation using piecewise linear hedging rule. Water Resour. Manag. 2018, 32, 1901–1911. [Google Scholar] [CrossRef]
- Ehteram, M.; Mousavi, S.F.; Karami, H.; Farzin, S.; Singh, V.P.; Chau, K.W.; El-Shafie, A. Reservoir operation based on evolutionary algorithms and multi-criteria decision-making under climate change and uncertainty. J. Hydroinform. 2018, 20, 332–355. [Google Scholar] [CrossRef]
- Ahmadianfar, I.; Adib, A.; Salarijazi, M. Optimizing multireservoir operation: Hybrid of bat algorithm and differential evolution. J. Water Resour. Plan. Manag. 2015, 142, 05015010. [Google Scholar] [CrossRef]
- Cheng, C.T.; Wang, W.C.; Xu, D.M.; Chau, K.W. Optimizing hydropower reservoir operation using hybrid genetic algorithm and chaos. Water Resour. Manag. 2008, 22, 895–909. [Google Scholar] [CrossRef] [Green Version]
- Afshar, M.H. Large scale reservoir operation by constrained particle swarm optimization algorithms. J. Hydro Environ. Res. 2012, 6, 75–87. [Google Scholar] [CrossRef]
- Chau, K.W. A split-step particle swarm optimization algorithm in river stage forecasting. J. Hydrol. 2007, 346, 131–135. [Google Scholar] [CrossRef] [Green Version]
- Afshar, M.H. Extension of the constrained particle swarm optimization algorithm to optimal operation of multi-reservoirs system. Int. J. Electr. Power Energy Syst. 2013, 51, 71–81. [Google Scholar] [CrossRef]
- Ehteram, M.; Karami, H.; Mousavi, S.F.; El-Shafie, A.; Amini, Z. Optimizing dam and reservoirs operation based model utilizing shark algorithm approach. Knowl. Based Syst. 2017, 122, 26–38. [Google Scholar] [CrossRef]
- Fallah-Mehdipour, E.; Haddad, O.B.; Mariño, M.A. Real-time operation of reservoir system by genetic programming. Water Resour. Manag. 2012, 26, 4091–4103. [Google Scholar] [CrossRef]
- Ostadrahimi, L.; Mariño, M.A.; Afshar, A. Multi-reservoir operation rules: Multi-swarm PSO-based optimization approach. Water Resour. Manag. 2012, 26, 407–427. [Google Scholar] [CrossRef]
- Moeini, R.; Afshar, M.H. Extension of the constrained ant colony optimization algorithms for the optimal operation of multi-reservoir systems. J. Hydroinform. 2013, 15, 155–173. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, S.; Wang, Y.; Jiang, Y.; Wang, H. Use of parallel deterministic dynamic programming and hierarchical adaptive genetic algorithm for reservoir operation optimization. Comput. Ind. Eng. 2013, 65, 310–321. [Google Scholar] [CrossRef]
- Haddad, O.B.; Moravej, M.; Loáiciga, H.A. Application of the water cycle algorithm to the optimal operation of reservoir systems. J. Irrig. Drain. Eng. 2014, 141, 04014064. [Google Scholar] [CrossRef]
- Bozorg-Haddad, O.; Karimirad, I.; Seifollahi-Aghmiuni, S.; Loáiciga, H.A. Development and application of the bat algorithm for optimizing the operation of reservoir systems. J. Water Resour. Plan. Manag. 2014, 141, 04014097. [Google Scholar] [CrossRef]
- Bolouri-Yazdeli, Y.; Haddad, O.B.; Fallah-Mehdipour, E.; Mariño, M.A. Evaluation of real-time operation rules in reservoir systems operation. Water Resour. Manag. 2014, 28, 715–729. [Google Scholar] [CrossRef]
- Haddad, O.B.; Hosseini-Moghari, S.M.; Loáiciga, H.A. Biogeography-based optimization algorithm for optimal operation of reservoir systems. Water Resour. Plan. Manag. 2015, 142, 04015034. [Google Scholar] [CrossRef]
- Asgari, H.R.; Bozorg Haddad, O.; Pazoki, M.; Loáiciga, H.A. Weed optimization algorithm for optimal reservoir operation. J. Irrig. Drain. Eng. 2015, 142, 04015055. [Google Scholar] [CrossRef]
- Akbari-Alashti, H.; Haddad, O.B.; Mariño, M.A. Application of fixed length gene genetic programming (FLGGP) in hydropower reservoir operation. Water Resour. Manag. 2015, 29, 3357–3370. [Google Scholar] [CrossRef]
- Bozorg-Haddad, O.; Janbaz, M.; Loáiciga, H.A. Application of the gravity search algorithm to multi-reservoir operation optimization. Adv. Water Resour. 2016, 98, 173–185. [Google Scholar] [CrossRef]
- Ehteram, M.; Allawi, M.F.; Karami, H.; Mousavi, S.F.; Emami, M.; Ahmed, E.S.; Farzin, S. Optimization of chain-reservoirs’ operation with a new approach in artificial intelligence. Water Resour. Manag. 2017, 31, 2085–2104. [Google Scholar]
- Ehteram, M.; Karami, H.; Mousavi, S.F.; Farzin, S.; Kisi, O. Optimization of energy management and conversion in the multi-reservoir systems based on evolutionary algorithms. J. Clean. Prod. 2017, 168, 1132–1142. [Google Scholar] [CrossRef]
- Mousavi, S.F.; Vaziri, H.R.; Karami, H.; Hadiani, O. Optimizing reservoirs exploitation with a new crow search algorithm based on a multi-criteria decision-making model. JWSS 2018, 22, 279–290. [Google Scholar]
- Karami, H.; Mousavi, S.F.; Farzin, S.; Ehteram, M.; Singh, V.P.; Kisi, O. Improved krill algorithm for reservoir operation. Water Resour. Manag. 2018, 32, 3353–3372. [Google Scholar] [CrossRef]
- Ehteram, M.; Karami, H.; Farzin, S. Reservoir optimization for energy production using a new evolutionary algorithm based on multi-criteria decision-making models. Water Resour. Manag. 2018, 32, 2539–2560. [Google Scholar] [CrossRef]
- Ehteram, M.; Karami, H.; Farzin, S. Reducing irrigation deficiencies based optimizing model for multi-reservoir systems utilizing spider monkey algorithm. Water Resour. Manag. 2018, 32, 2315–2334. [Google Scholar] [CrossRef]
- Karami, H.; Ehteram, M.; Mousavi, S.F.; Farzin, S.; Kisi, O.; El-Shafie, A. Optimization of energy management and conversion in the water systems based on evolutionary algorithms. Neural Comput. Appl. 2018, 1–4. [Google Scholar] [CrossRef]
- Roshanaei, M.; Lucas, C.; Mehrabian, A.R. Adaptive beamforming using a novel numerical optimisation algorithm. IET Microw. Antennas Propag. 2009, 3, 765–773. [Google Scholar] [CrossRef]
- Rad, H.S.; Lucas, C. A recommender system based on invasive weed optimization algorithm. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 4297–4304. [Google Scholar]
- Chakraborty, P.; Roy, G.G.; Das, S.; Panigrahi, B.K. On population variance and explorative power of invasive weed optimization algorithm. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, 9–11 December 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 227–232. [Google Scholar]
- El-Shafie, A.; Jaafer, O.; Akrami, S.A. Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River, Malaysia. Int. J. Phys. Sci. 2011, 6, 2875–2888. [Google Scholar]
Month | High | Medium | Low | Demand |
---|---|---|---|---|
Billion Cubic Meters (BCM) | ||||
January | 4.8 | 3.15 | 1.90 | 3.5 |
February | 3.7 | 1.95 | 0.80 | 3.8 |
March | 3.5 | 1.7 | 0.55 | 4.4 |
April | 2.7 | 1.15 | 0.30 | 4.9 |
May | 2.5 | 1.35 | 0.65 | 5.1 |
June | 2.8 | 1.65 | 0.90 | 5.2 |
July | 7.7 | 4.75 | 2.80 | 5.8 |
August | 27.5 | 20.4 | 15.50 | 5.1 |
September | 31 | 24.05 | 18.55 | 4.5 |
October | 21.2 | 15.6 | 11.3 | 3.9 |
November | 10.9 | 7.30 | 4.75 | 3.2 |
December | 6.5 | 4.30 | 2.7 | 2.9 |
High Inflow | |||||||
---|---|---|---|---|---|---|---|
NPmin | Objective Function (BCM) | NPmax | Objective Function (BCM) | NSmin | Objective Function (BCM) | NSmax | Objective Function (BCM) |
5 | 0.994 | 25 | 0.993 | 1 | 0.998 | 5 | 0.993 |
10 | 0.985 | 50 | 0.985 | 2 | 0.985 | 10 | 0.985 |
15 | 0.989 | 75 | 0.992 | 3 | 0.989 | 15 | 0.987 |
20 | 0.998 | 100 | 0.999 | 4 | 0.991 | 20 | 0.991 |
Medium Inflow | |||||||
5 | 1.122 | 25 | 1.110 | 1 | 1.14 | 5 | 1.098 |
10 | 1.021 | 50 | 1.021 | 2 | 1.100 | 10 | 1.021 |
15 | 1.098 | 75 | 1.076 | 3 | 1.021 | 15 | 1.078 |
20 | 1.111 | 100 | 1.085 | 4 | 1.045 | 20 | 1.079 |
Low Inflow | |||||||
5 | 1.141 | 25 | 1.161 | 1 | 1.128 | 5 | 1.090 |
10 | 1.121 | 50 | 1.141 | 2 | 1.021 | 10 | 1.121 |
15 | 1.124 | 75 | 1.121 | 3 | 1.155 | 15 | 1.157 |
20 | 1.135 | 100 | 1.124 | 4 | 1.179 | 20 | 1.178 |
High Inflow | |||||||
---|---|---|---|---|---|---|---|
Population Size | Objective Function (BCM) | Maximum Frequency | Objective Function (BCM) | Minimum Frequency | Objective Function (BCM) | Maximum Loudness | Objective Function (BCM) |
10 | 1.055 | 3 | 1.078 | 1 | 1.091 | 0.20 | 1.067 |
30 | 1.045 | 5 | 1.039 | 2 | 1.086 | 0.40 | 1.055 |
50 | 1.039 | 7 | 1.042 | 3 | 1.039 | 0.60 | 1.039 |
70 | 1.042 | 9 | 1.055 | 4 | 1.045 | 0.80 | 1.067 |
Medium Inflow | |||||||
10 | 1.124 | 3 | 1.145 | 1 | 1.147 | 0.20 | 1.135 |
30 | 1.119 | 5 | 1.112 | 2 | 1.112 | 0.40 | 1.112 |
50 | 1.112 | 7 | 1.118 | 3 | 1.116 | 0.60 | 1.118 |
70 | 1.132 | 9 | 1.121 | 4 | 1.121 | 0.80 | 1.122 |
Low Inflow | |||||||
10 | 1.149 | 3 | 1.148 | 1 | 1.143 | 0.20 | 1.147 |
30 | 1.132 | 5 | 1.132 | 2 | 1.132 | 0.40 | 1.139 |
50 | 1.156 | 7 | 1.139 | 3 | 1.138 | 0.60 | 1.141 |
70 | 1.170 | 9 | 1.154 | 4 | 1.145 | 0.80 | 1.145 |
High Inflow | |||||||
---|---|---|---|---|---|---|---|
Population Size | Objective Function (BCM) | c1 = c2 | Objective Function (BCM) | W | Objective Function (BCM) | wdamp | Objective Function (BCM) |
10 | 1.118 | 1.6 | 1.122 | 0.4 | 1.131 | 0.60 | 1.123 |
30 | 1.115 | 1.8 | 1.115 | 0.60 | 1.125 | 0.70 | 1.117 |
50 | 1.121 | 2.0 | 1.117 | 0.80 | 1.115 | 0.80 | 1.115 |
70 | 1.130 | 2.2 | 1.120 | 1.0 | 1.119 | 0.90 | 1.121 |
Medium Inflow | |||||||
10 | 1.145 | 1.6 | 1.142 | 0.4 | 1.134 | 0.60 | 1.141 |
30 | 1.133 | 1.8 | 1.128 | 0.60 | 1.128 | 0.70 | 1.128 |
50 | 1.128 | 2.0 | 1.134 | 0.80 | 1.136 | 0.80 | 1.135 |
70 | 1.135 | 2.2 | 1.140 | 1.0 | 1.140 | 0.90 | 1.140 |
Low Inflow | |||||||
10 | 1.167 | 1.6 | 1.169 | 0.4 | 1.165 | 0.60 | 1.169 |
30 | 1.155 | 1.8 | 1.155 | 0.60 | 1.155 | 0.70 | 1.155 |
50 | 1.159 | 2.0 | 1.161 | 0.80 | 1.159 | 0.80 | 1.157 |
70 | 1.163 | 2.2 | 1.168 | 1.0 | 1.163 | 0.90 | 1.161 |
High Inflow | |||||
---|---|---|---|---|---|
Population Size | Objective Function (BMC) | Crossover Probability | Objective Function (BMC) | Mutation Probability | Objective Function (BMC) |
10 | 1.135 | 0.20 | 1.133 | 0.20 | 1.134 |
30 | 1.121 | 0.40 | 1.121 | 0.40 | 1.129 |
50 | 1.129 | 0.60 | 1.125 | 0.60 | 1.121 |
70 | 1.136 | 0.80 | 1.129 | 0.80 | 1.128 |
Medium Inflow | |||||
10 | 1.154 | 0.20 | 1.167 | 0.20 | 1.165 |
30 | 1.142 | 0.40 | 1.141 | 0.40 | 1.142 |
50 | 1.145 | 0.60 | 1.155 | 0.60 | 1.149 |
70 | 1.149 | 0.80 | 1.167 | 0.80 | 1.54 |
Low Inflow | |||||
10 | 1.197 | 0.20 | 1.199 | 0.20 | 1.192 |
30 | 1.185 | 0.40 | 1.185 | 0.40 | 1.185 |
50 | 1.189 | 0.60 | 1.191 | 0.60 | 1.187 |
70 | 1.191 | 0.80 | 1.195 | 0.80 | 1.189 |
Run | IWA | WA | BA | IPSOA | GA |
---|---|---|---|---|---|
1 | 0.985 | 1.035 | 1.039 | 1.115 | 1.121 |
2 | 0.985 | 1.037 | 1.045 | 1.118 | 1.125 |
3 | 0.987 | 1.037 | 1.039 | 1.115 | 1.121 |
4 | 0.985 | 1.037 | 1.039 | 1.115 | 1.121 |
5 | 0.985 | 1.037 | 1.039 | 1.115 | 1.121 |
6 | 0.985 | 1.037 | 1.039 | 1.115 | 1.121 |
7 | 0.985 | 1.037 | 1.039 | 1.115 | 1.121 |
8 | 0.985 | 1.037 | 1.039 | 1.115 | 1.121 |
9 | 0.985 | 1.037 | 1.039 | 1.115 | 1.121 |
10 | 0.985 | 1.037 | 1.039 | 1.115 | 1.121 |
Average | 0.985 | 1.037 | 1.040 | 1.115 | 1.121 |
Computational Time(s) | 22 | 25 | 27 | 29 | 31 |
Variation Coefficient | 0.0003 | 0.0006 | 0.001 | 0.0008 | 0.001 |
Run | IWA | WA | BA | IPSOA | GA |
---|---|---|---|---|---|
1 | 1.021 | 1.110 | 1.112 | 1.128 | 1.142 |
2 | 1.024 | 1.110 | 1.114 | 1.128 | 1.146 |
3 | 1.022 | 1.114 | 1.112 | 1.128 | 1.142 |
4 | 1.021 | 1.110 | 1.112 | 1.133 | 1.142 |
5 | 1.021 | 1.110 | 1.114 | 1.128 | 1.142 |
6 | 1.021 | 1.110 | 1.112 | 1.128 | 1.142 |
7 | 1.021 | 1.110 | 1.112 | 1.128 | 1.142 |
8 | 1.021 | 1.110 | 1.112 | 1.128 | 1.142 |
9 | 1.021 | 1.110 | 1.112 | 1.128 | 1.142 |
10 | 1.021 | 1.110 | 1.112 | 1.128 | 1.142 |
Average | 1.021 | 1.110 | 1.112 | 1.128 | 1.142 |
Computational Time (s) | 22 | 25 | 28 | 30 | 32 |
Variation Coefficient | 0.0007 | 0.0010 | 0.0008 | 0.0010 | 0.0008 |
Run | IWA | WA | BA | IPSOA | GA |
---|---|---|---|---|---|
1 | 1.121 | 1.125 | 1.132 | 1.155 | 1.187 |
2 | 1.122 | 1.129 | 1.132 | 1.155 | 1.88 |
3 | 1.123 | 1.125 | 1.136 | 1.155 | 1.185 |
4 | 1.121 | 1.125 | 1.132 | 1.159 | 1.185 |
5 | 1.121 | 1.125 | 1.132 | 1.155 | 1.185 |
6 | 1.121 | 1.125 | 1.132 | 1.155 | 1.185 |
7 | 1.121 | 1.125 | 1.132 | 1.155 | 1.185 |
8 | 1.121 | 1.125 | 1.132 | 1.155 | 1.185 |
9 | 1.121 | 1.125 | 1.132 | 1.155 | 1.185 |
10 | 1.121 | 1.125 | 1.132 | 1.155 | 1.185 |
Average | 1.121 | 1.125 | 1.132 | 1.155 | 1.185 |
Computational Time (s) | 21 | 24 | 26 | 27 | 29 |
Variation Coefficient | 0.0005 | 0.001 | 0.001 | 0.001 | 0.0009 |
Month | IWA | WA | BA | IPSOA | GA |
---|---|---|---|---|---|
January | 1.32 | 1.43 | 2.12 | 2.18 | 2.30 |
February | 1.21 | 1.31 | 2.11 | 2.15 | 2.55 |
March | 1.12 | 1.14 | 1.65 | 1.78 | 1.79 |
April | 1.14 | 1.16 | 1.78 | 1.82 | 1.75 |
May | 0.98 | 1.02 | 1.22 | 1.45 | 1.57 |
June | 0.91 | 0.93 | 0.98 | 1.14 | 1.21 |
July | 1.56 | 1.57 | 1.59 | 1.61 | 1.52 |
August | 1.11 | 1.21 | 1.14 | 1.16 | 1.18 |
September | 1.12 | 1.14 | 1.15 | 1.17 | 1.21 |
October | 0.76 | 0.78 | 0.82 | 0.85 | 0.87 |
November | 0.012 | 0.015 | 0.017 | 0.019 | 0.020 |
December | 1.14 | 1.21 | 1.31 | 1.32 | 1.30 |
Total | 12.382 | 12.915 | 15.14 | 16.649 | 17.27 |
Medium Inflow | |||||
Month | IWA | WA | BA | IPSOA | GA |
January | 1.12 | 1.33 | 2.10 | 2.15 | 2.28 |
February | 1.20 | 1.22 | 1.99 | 2.12 | 2.45 |
March | 1.09 | 1.11 | 1.45 | 1.72 | 1.68 |
April | 1.11 | 1.14 | 1.59 | 1.65 | 1.75 |
May | 0.77 | 1.01 | 1.32 | 1.34 | 1.52 |
June | 0.82 | 0.91 | 0.98 | 1.10 | 1.11 |
July | 1.54 | 1.47 | 1.61 | 1.54 | 1.32 |
August | 1.10 | 1.11 | 1.24 | 1.14 | 1.19 |
September | 1.10 | 1.10 | 1.17 | 1.12 | 1.21 |
October | 0.74 | 0.77 | 0.84 | 0.78 | 0.87 |
November | 0.012 | 0.014 | 0.017 | 0.019 | 0.020 |
December | 1.12 | 1.20 | 1.35 | 1.25 | 1.30 |
Total | 11.83 | 12.51 | 15.657 | 15.925 | 16.7 |
Low Inflow | |||||
Month | IWA | WA | BA | IPSOA | GA |
January | 0.958 | 1.31 | 2.10 | 2.12 | 2.17 |
February | 1.12 | 1.12 | 1.89 | 1.95 | 2.29 |
March | 1.09 | 1.01 | 1.32 | 1.55 | 1.65 |
April | 0.99 | 1.12 | 1.29 | 1.65 | 1.72 |
May | 0.71 | 1.00 | 1.12 | 1.34 | 1.51 |
June | 0.81 | 0.90 | 0.98 | 0.91 | 1.10 |
July | 1.52 | 1.26 | 1.31 | 1.42 | 1.29 |
August | 1.02 | 1.25 | 1.14 | 1.14 | 1.19 |
September | 0.99 | 1.10 | 1.57 | 1.11 | 1.11 |
October | 0.72 | 0.75 | 0.84 | 0.78 | 0.87 |
November | 0.012 | 0.014 | 0.017 | 0.019 | 0.020 |
December | 1.11 | 1.19 | 1.25 | 1.23 | 1.28 |
Total | 11.05 | 12.024 | 14.827 | 15.390 | 16.18 |
Algorithm | Reliability Index (%) | Vulnerability Index (%) | Resiliency Index |
---|---|---|---|
High Inflow | |||
IWA | 95 | 12 | 54 |
WA | 91 | 14 | 52 |
BA | 88 | 15 | 50 |
IPSO | 78 | 17 | 49 |
GA | 75 | 19 | 47 |
Medium Inflow | |||
IWA | 90 | 14 | 51 |
WA | 89 | 16 | 50 |
BA | 87 | 18 | 49 |
IPSO | 74 | 19 | 48 |
GA | 72 | 20 | 45 |
Low Inflow | |||
IWA | 89 | 16 | 50 |
WA | 87 | 17 | 47 |
BA | 85 | 20 | 44 |
IPSO | 82 | 21 | 42 |
GA | 70 | 22 | 40 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ehteram, M.; P. Singh, V.; Karami, H.; Hosseini, K.; Dianatikhah, M.; Hossain, M.S.; Ming Fai, C.; El-Shafie, A. Irrigation Management Based on Reservoir Operation with an Improved Weed Algorithm. Water 2018, 10, 1267. https://doi.org/10.3390/w10091267
Ehteram M, P. Singh V, Karami H, Hosseini K, Dianatikhah M, Hossain MS, Ming Fai C, El-Shafie A. Irrigation Management Based on Reservoir Operation with an Improved Weed Algorithm. Water. 2018; 10(9):1267. https://doi.org/10.3390/w10091267
Chicago/Turabian StyleEhteram, Mohammad, Vijay P. Singh, Hojat Karami, Khosrow Hosseini, Mojgan Dianatikhah, Md. Shabbir Hossain, Chow Ming Fai, and Ahmed El-Shafie. 2018. "Irrigation Management Based on Reservoir Operation with an Improved Weed Algorithm" Water 10, no. 9: 1267. https://doi.org/10.3390/w10091267
APA StyleEhteram, M., P. Singh, V., Karami, H., Hosseini, K., Dianatikhah, M., Hossain, M. S., Ming Fai, C., & El-Shafie, A. (2018). Irrigation Management Based on Reservoir Operation with an Improved Weed Algorithm. Water, 10(9), 1267. https://doi.org/10.3390/w10091267