A Scenario for Origin of Global 4 mHz Oscillations in Solar Corona
Abstract
:1. Introduction
2. The Model
2.1. Basic Equations
2.2. Artificial Chromospheric Energy Flux
2.3. Radiative Cooling
2.4. State of Matter
3. Numerical Settings
3.1. Grid and Initial Conditions
3.2. Boundary Conditions
4. Numerical Results
4.1. Structure of the Model Atmosphere
4.2. Origin of Global 4 mHz Oscillation
4.3. Mass Upflows
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | There are two reasons for this omission. One is that the resolution of our model is too low to accurately reveal the TR. Another is that the tiny time-step due to the diffusion calculation for the heat conduction is unfavorable for long-term physical time integration. According to our computational practice, the effect of ignoring heat conduction does not alter the generation of oscillations, which appear in the early stages of our simulations, but the code of the heat conduction is too slow to reveal its long-term effects through sufficient long time-integration. |
2 | We used Equation (5) to calculate the estimation of the acoustic energy flux. The quantities required in the equation were obtained from the profiles of Day 354 (blue lines in Figure 3) at (∼2800 km, the birthplace of acoustic waves). They are the density , temperature , and velocity amplitude , respectively. The energy flux of Alfvénic waves was obtained from Supplementary Table 2 of [31]. |
References
- Edlén, B. Die Deutung der Emissionslinien im Spektrum der Sonnenkorona. Mit 6 Abbildungen. Z. Astrophys. 1943, 22, 30. [Google Scholar]
- Hollweg, J.V. Energy and Momentum Transport by Waves in the Solar Atmosphere. In Advances in Space Plasma Physics; Grossmann, W., Campbell, E.M., Buti, B., Eds.; Imperial College Press: London, UK, 1985; p. 77. [Google Scholar]
- Biermann, L. Zur Deutung der chromosphärischen Turbulenz und des Exzesses der UV-Strahlung der Sonne. Naturwissenschaften 1946, 33, 118–119. [Google Scholar] [CrossRef]
- Schwarzschild, M. On Noise Arising from the Solar Granulation. Astrophys. J. 1948, 107, 1. [Google Scholar] [CrossRef]
- Ulmschneider, P. On Frequency and Strength of Shock Waves in the Solar Atmosphere. Sol. Phys. 1970, 12, 403–415. [Google Scholar] [CrossRef]
- Ulmschneider, P. On the Computation of Shock Heated Models for the Solar Chromosphere and Corona. Astron. Astrophys. 1971, 12, 297. [Google Scholar]
- Ulmschneider, P. On the Propagation of a Spectrum of Acoustic Waves in the Solar Atmosphere. Astron. Astrophys. 1971, 14, 275. [Google Scholar]
- Stein, R.F.; Schwartz, R.A. Waves in the Solar Atmosphere. II. Large-Amplitude Acoustic Pulse Propagation. Astrophys. J. 1972, 177, 807. [Google Scholar] [CrossRef]
- Stein, R.F.; Schwartz, R.A. Waves in the Solar Atmosphere. III. The Propagation of Periodic Wave Trains in a Gravitational Atmosphere. Astrophys. J. 1973, 186, 1083–1090. [Google Scholar] [CrossRef]
- Saha, M.N. LIII. Ionization in the solar chromosphere. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1920, 40, 472–488. [Google Scholar] [CrossRef]
- Ulmschneider, P.; Kalkofen, W.; Nowak, T.; Bohn, U. Acoustic waves in the solar atmosphere. I. The hydrodynamic code. Astron. Astrophys. 1977, 54, 61–70. [Google Scholar]
- Kalkofen, W.; Ulmschneider, P. Acoustic waves in the solar atmosphere. II. Radiative damping. Astron. Astrophys. 1977, 57, 193–209. [Google Scholar]
- Ulmschneider, P.; Kalkofen, W. Acoustic Waves in the Solar Atmosphere. Ill. A Theoretical Tem- perature Minimum. Astron. Astrophys. 1977, 57, 199. [Google Scholar]
- Anderson, L.S.; Athay, R.G. Chromospheric and Coronal Heating. Astron. Astrophys. 1989, 336, 1089. [Google Scholar] [CrossRef]
- Anderson, L.S.; Athay, R.G. Model Solar Chromosphere with Prescribed Heating. Astrophys. J. 1989, 346, 1010. [Google Scholar] [CrossRef]
- Vernazza, J.E.; Avrett, E.H.; Loeser, R. Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet sun. Astrophys. J. 1981, 45, 635–725. [Google Scholar] [CrossRef]
- Endler, F.; Deubner, F.L. The influence of seeing on the observation of short period fluctuations in the solar atmosphere. Astron. Astrophys. 1983, 121, 291–296. [Google Scholar]
- Deubner, F.L. Observations of Solar Oscillations. In Pulsation and Mass Loss in Stars; Springer: Berlin/Heidelberg, Germany, 1988; pp. 163–179. [Google Scholar]
- Carlsson, M.; Stein, R.F. Non-LTE Radiating Acoustic Shocks and CA II K2V Bright Points. Astrophys. J. 1992, 397, L59. [Google Scholar] [CrossRef]
- Fossum, A.; Carlsson, M. High-frequency acoustic waves are not sufficient to heat the solar chromosphere. Nature 2005, 435, 919–921. [Google Scholar] [CrossRef]
- Handy, B.N.; Acton, L.W.; Kankelborg, C.C.; Wolfson, C.J.; Akin, D.J.; Bruner, M.E.; Caravalho, R.; Catura, R.C.; Chevalier, R.; Duncan, D.W.; et al. The transition region and coronal explorer. Sol. Phys. 1999, 187, 229–260. [Google Scholar] [CrossRef]
- Fossum, A.; Carlsson, M. Response Functions of the Ultraviolet Filters of TRACE and the Detectability of High-Frequency Acoustic Waves. Astrophys. J. 2005, 625, 556–562. [Google Scholar] [CrossRef]
- Wedemeyer-Böhm, S.; Steiner, O.; Bruls, J.; Rammacher, W. What is Heating the Quiet-Sun Chromosphere? In The Physics of Chromospheric Plasmas, Proceedings of the Coimbra Solar Physics Meeting, Coimbra, Portugal, 9–13 October 2006; Heinzel, P., Dorotovič, I., Rutten, R.J., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 2007; Volume 368, p. 93. [Google Scholar] [CrossRef]
- Cuntz, M.; Rammacher, W.; Musielak, Z.E. Acoustic Heating of the Solar Chromosphere: Present Indeed and Locally Dominant. Astrophys. J. 2007, 657, L57–L60. [Google Scholar] [CrossRef]
- Kalkofen, W. Is the Solar Chromosphere Heated by Acoustic Waves? Astrophys. J. 2007, 671, 2154–2158. [Google Scholar] [CrossRef]
- Bello González, N.; Flores Soriano, M.; Kneer, F.; Okunev, O. Acoustic waves in the solar atmosphere at high spatial resolution. Astron. Astrophys. 2009, 508, 941–950. [Google Scholar] [CrossRef]
- Bello González, N.; Franz, M.; Martínez Pillet, V.; Bonet, J.A.; Solanki, S.K.; del Toro Iniesta, J.C.; Schmidt, W.; Gandorfer, A.; Domingo, V.; Barthol, P.; et al. Detection of Large Acoustic Energy Flux in the Solar Atmosphere. Astrophys. J. 2010, 723, L134–L138. [Google Scholar] [CrossRef]
- Abbasvand, V.; Sobotka, M.; Švanda, M.; Heinzel, P.; Liu, W.; Mravcová, L. IRIS observations of chromospheric heating by acoustic waves in solar quiet and active regions. Astron. Astrophys. 2021, 648, A28. [Google Scholar] [CrossRef]
- Abbasvand, V.; Sobotka, M.; Heinzel, P.; Švanda, M.; Jurčák, J.; del Moro, D.; Berrilli, F. Chromospheric Heating by Acoustic Waves Compared to Radiative Cooling. II. Revised Grid of Models. Astrophys. J. 2020, 890, 22. [Google Scholar] [CrossRef]
- Abbasvand, V.; Sobotka, M.; Švanda, M.; Heinzel, P.; García-Rivas, M.; Denker, C.; Balthasar, H.; Verma, M.; Kontogiannis, I.; Koza, J.; et al. Observational study of chromospheric heating by acoustic waves. Astron. Astrophys. 2020, 642, A52. [Google Scholar] [CrossRef]
- Morton, R.J.; Weberg, M.J.; McLaughlin, J.A. A basal contribution from p-modes to the Alfvénic wave flux in the Sun’s corona. Nat. Astron. 2019, 3, 223. [Google Scholar] [CrossRef]
- De Moortel, I.; Ireland, J.; Hood, A.W.; Walsh, R.W. The detection of 3 & 5 min period oscillations in coronal loops. Astron. Astrophys. 2002, 387, L13–L16. [Google Scholar] [CrossRef]
- Van Doorsselaere, T.; Nakariakov, V.M.; Young, P.R.; Verwichte, E. Coronal magnetic field measurement using loop oscillations observed by Hinode/EIS. Astron. Astrophys. 2008, 487, L17–L20. [Google Scholar] [CrossRef]
- Tomczyk, S.; McIntosh, S.W. Time-Distance Seismology of the Solar Corona with CoMP. Astrophys. J. 2009, 697, 1384–1391. [Google Scholar] [CrossRef]
- Morton, R.J.; Tomczyk, S.; Pinto, R.F. A Global View of Velocity Fluctuations in the Corona below 1.3 R⊙ with CoMP. Astrophys. J. 2016, 828, 89. [Google Scholar] [CrossRef]
- Zaqarashvili, T.V.; Murawski, K.; Khodachenko, M.L.; Lee, D. The excitation of 5-min oscillations in the solar corona. Astron. Astrophys. 2011, 529, A85. [Google Scholar] [CrossRef]
- Abbett, W.P. The Magnetic Connection between the Convection Zone and Corona in the Quiet Sun. Astrophys. J. 2007, 665, 1469–1488. [Google Scholar] [CrossRef]
- Dmitruk, P.; Matthaeus, W.H.; Milano, L.J.; Oughton, S.; Zank, G.P.; Mullan, D.J. Coronal Heating Distribution Due to Low-Frequency, Wave-driven Turbulence. Astrophys. J. 2002, 575, 571–577. [Google Scholar] [CrossRef]
- Li, X.; Habbal, S.R. Coronal Loops Heated by Turbulence-driven Alfvén Waves. Astrophys. J. 2003, 598, L125–L128. [Google Scholar] [CrossRef]
- Sokolov, I.V.; Holst, B.v.d.; Manchester, W.B.; Su Ozturk, D.C.; Szente, J.; Taktakishvili, A.; Tóth, G.; Jin, M.; Gombosi, T.I. Threaded-field-line Model for the Low Solar Corona Powered by the Alfvén Wave Turbulence. Astrophys. J. 2021, 908, 172. [Google Scholar] [CrossRef]
- Bel, N.; Leroy, B. Analytical Study of Magnetoacoustic Gravity Waves. Astron. Astrophys. 1977, 55, 239. [Google Scholar]
- De Pontieu, B.; Erdélyi, R.; James, S.P. Solar chromospheric spicules from the leakage of photospheric oscillations and flows. Nature 2004, 430, 536–539. [Google Scholar] [CrossRef]
- Riedl, J.M.; Van Doorsselaere, T.; Reale, F.; Goossens, M.; Petralia, A.; Pagano, P. Acoustic Wave Properties in Footpoints of Coronal Loops in 3D MHD Simulations. Astrophys. J. 2021, 922, 225. [Google Scholar] [CrossRef]
- Vekstein, G.; Priest, E.; Steele, C.; Wolfson, R. Magnetic Coronal Heating and Global Restructuring of the Coronal Magnetic Field by Reconnective Relaxation. In Solar Active Region Evolution: Comparing Models with Observations; Balasubramaniam, K.S., Simon, G.W., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the pacific: San Francisco, CA, USA, 1994; Volume 68, p. 194. [Google Scholar]
- Pueschel, M.J.; Told, D.; Terry, P.W.; Jenko, F.; Zweibel, E.G.; Zhdankin, V.; Lesch, H. Magnetic Reconnection Turbulence in Strong Guide Fields: Basic Properties and Application to Coronal Heating. Astrophys. J. 2014, 213, 30. [Google Scholar] [CrossRef]
- Narain, U.; Ulmschneider, P. Chromospheric and Coronal Heating Mechanisms II. Space Sci. Rev. 1996, 75, 453–509. [Google Scholar] [CrossRef]
- Aschwanden, M.J. Physics of the Solar Corona. An Introduction with Problems and Solutions, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Erdélyi, R.; Ballai, I. Heating of the solar and stellar coronae: A review. Astron. Nachrichten 2007, 328, 726–733. [Google Scholar] [CrossRef]
- Cally, P.S.; Goossens, M. Three-Dimensional MHD Wave Propagation and Conversion to Alfvén Waves near the Solar Surface. I. Direct Numerical Solution. Sol. Phys. 2008, 251, 251–265. [Google Scholar] [CrossRef]
- Cally, P.S.; Hansen, S.C. Benchmarking Fast-to-Alfvén Mode Conversion in a Cold Magnetohydrodynamic Plasma. Astrophys. J. 2011, 738, 119. [Google Scholar] [CrossRef]
- Cally, P.S. Alfvén waves in the structured solar corona. Mon. Not. R. Astron. Soc. 2017, 466, 413–424. [Google Scholar] [CrossRef]
- Jefferies, S.M.; McIntosh, S.W.; Armstrong, J.D.; Bogdan, T.J.; Cacciani, A.; Fleck, B. Magnetoacoustic Portals and the Basal Heating of the Solar Chromosphere. Astrophys. J. 2006, 648, L151–L155. [Google Scholar] [CrossRef]
- White, C.J.; Stone, J.M.; Gammie, C.F. An Extension of the Athena++ Code Framework for GRMHD Based on Advanced Riemann Solvers and Staggered-mesh Constrained Transport. Astrophys. J. 2016, 225, 22. [Google Scholar] [CrossRef]
- Zhang, F.; Poedts, S.; Lani, A.; Kuźma, B.; Murawski, K. Two-fluid Modeling of Acoustic Wave Propagation in Gravitationally Stratified Isothermal Media. Astrophys. J. 2021, 911, 119. [Google Scholar] [CrossRef]
- Sutherland, R.S.; Dopita, M.A. Cooling Functions for Low-Density Astrophysical Plasmas. Astrophys. J. 1993, 88, 253. [Google Scholar] [CrossRef]
- Mashchenko, S.; Wadsley, J.; Couchman, H.M.P. Stellar Feedback in Dwarf Galaxy Formation. Science 2008, 319, 174. [Google Scholar] [CrossRef]
- Carlsson, M.; Stein, R.F. Dynamic Hydrogen Ionization. Astrophys. J. 2002, 572, 626. [Google Scholar] [CrossRef]
- Martínez-Sykora, J.; Leenaarts, J.; Pontieu, B.D.; Nóbrega-Siverio, D.; Hansteen, V.H.; Carlsson, M.; Szydlarski, M. Ion–neutral Interactions and Nonequilibrium Ionization in the Solar Chromosphere. Astrophys. J. 2020, 889, 95. [Google Scholar] [CrossRef]
- Xue, L.; Jiao, C.L.; Li, Y. Three-dimensional simulations of accretion flow in the progenitor of Tycho’s supernova. Mon. Not. R. Astron. Soc. 2021, 501, 664–675. [Google Scholar] [CrossRef]
- Cohen, O. The independency of stellar mass-loss rates on stellar X-ray luminosity and activity level based on solar X-ray flux and solar wind observations. Mon. Not. R. Astron. Soc. 2011, 417, 2592–2600. [Google Scholar] [CrossRef]
- Van Doorsselaere, T.; Srivastava, A.K.; Antolin, P.; Magyar, N.; Vasheghani Farahani, S.; Tian, H.; Kolotkov, D.; Ofman, L.; Guo, M.; Arregui, I.; et al. Coronal Heating by MHD Waves. Sol. Phys. 2020, 216, 140. [Google Scholar] [CrossRef]
- Morgan, H.; Taroyan, Y. Global conditions in the solar corona from 2010 to 2017. Sci. Adv. 2017, 3, e1602056. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.P. Theory of Stellar Pulsation; Princeton University Press: Princeton, NJ, USA, 1980. [Google Scholar]
- Unno, W.; Osaki, Y.; Ando, H.; Saio, H.; Shibahashi, H. Nonradial Oscillations of Stars; University of Tokyo Press: Tokyo, Japan, 1989. [Google Scholar]
- Tomczyk, S.; McIntosh, S.W.; Keil, S.L.; Judge, P.G.; Schad, T.; Seeley, D.H.; Edmondson, J. Alfvén Waves in the Solar Corona. Science 2007, 317, 1192. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, S.W.; de Pontieu, B.; Carlsson, M.; Hansteen, V.; Boerner, P.; Goossens, M. Alfvénic waves with sufficient energy to power the quiet solar corona and fast solar wind. Nature 2011, 475, 477–480. [Google Scholar] [CrossRef]
- Cranmer, S.R.; van Ballegooijen, A.A. On the Generation, Propagation, and Reflection of Alfvén Waves from the Solar Photosphere to the Distant Heliosphere. Astrophys. J. 2005, 156, 265–293. [Google Scholar] [CrossRef]
- Vranjes, J.; Poedts, S.; Pandey, B.P.; de Pontieu, B. Energy flux of Alfvén waves in weakly ionized plasma. Astron. Astrophys. 2008, 478, 553–558. [Google Scholar] [CrossRef]
- Tsap, Y.T.; Stepanov, A.V.; Kopylova, Y.G. Energy Flux of Alfvén Waves in Weakly Ionized Plasma and Coronal Heating of the Sun. Sol. Phys. 2011, 270, 205–211. [Google Scholar] [CrossRef]
- Felipe, T. Three-dimensional Numerical Simulations of Fast-to-Alfvén Conversion in Sunspots. Astrophys. J. 2012, 758, 96. [Google Scholar] [CrossRef]
- Hansen, S.C.; Cally, P.S. Benchmarking Fast-to-Alfvén Mode Conversion in a Cold MHD Plasma. II. How to Get Alfvén Waves through the Solar Transition Region. Astrophys. J. 2012, 751, 31. [Google Scholar] [CrossRef]
- Parenti, S. Solar Prominences: Observations. Living Rev. Sol. Phys. 2014, 11, 1. [Google Scholar] [CrossRef]
- Ulmschneider, P.; Rammacher, W.; Musielak, Z.E.; Kalkofen, W. On the Validity of Acoustically Heated Chromosphere Models. Astrophys. J. 2005, 631, L155–L158. [Google Scholar] [CrossRef]
Case | p-Mode Freq. | Mass Loss | Max Temp. | |
---|---|---|---|---|
[×103 cm s−1] | [mHz] | [×10−11 g cm−2 s−1] | [×106 K] | |
A | 16.1 | 3.39–4.98 | 6.8 | 1.1 |
B | 1.61 | 3.90–4.07 | 1.4 | 0.92 |
C | 0.21 | 3.99–4.38 | 0.20 | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, L.; Jiao, C.; Zhang, L. A Scenario for Origin of Global 4 mHz Oscillations in Solar Corona. Universe 2025, 11, 14. https://doi.org/10.3390/universe11010014
Xue L, Jiao C, Zhang L. A Scenario for Origin of Global 4 mHz Oscillations in Solar Corona. Universe. 2025; 11(1):14. https://doi.org/10.3390/universe11010014
Chicago/Turabian StyleXue, Li, Chengliang Jiao, and Lixin Zhang. 2025. "A Scenario for Origin of Global 4 mHz Oscillations in Solar Corona" Universe 11, no. 1: 14. https://doi.org/10.3390/universe11010014
APA StyleXue, L., Jiao, C., & Zhang, L. (2025). A Scenario for Origin of Global 4 mHz Oscillations in Solar Corona. Universe, 11(1), 14. https://doi.org/10.3390/universe11010014