A Chaotic Jerk Oscillator with Complete Control via Fractional Exponentiation and Its Experimental Analog Circuit Realization
Abstract
:1. Introduction
- (1)
- The overall amplitude control parameter is discovered in the designed chaotic oscillator, allowing one to directly influence the amplitude of all system variables;
- (2)
- Two offset parameters are identified, one realizing offset amplification along one dimension and the other providing cross-dimensional offset amplification;
- (3)
- Fractional exponentiation is achieved in the analog domain using logarithmic and exponential operation modules as building blocks, exploiting the nonlinear response of bipolar transistors, according to a newly introduced circuit known as the 444 circuit;
- (4)
- A detailed experimental characterization is undertaken.
2. System Definition
3. Dynamical Analysis
3.1. Equilibrium Points and Stability
3.2. Bifurcation Analysis
4. Complete Control
4.1. Amplitude Control
4.2. Two-Dimensional Offset Boosting
5. Analog Electronic Circuit Experiments
5.1. Circuit Design and Experimental Setup
5.2. Results
6. Discussion and Conclusions
7. Patents
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, S.K.; Chen, C.L.; Yau, H.T. Control of chaos in Lorenz system. Chaos Solitons Fractals 2002, 13, 767–780. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, C.; Liu, Z.; Lei, T.; Chen, G. Simplified memristive Lorenz oscillator. IEEE Trans. Circuits Syst. II Express Briefs. 2022, 69, 3344–3348. [Google Scholar] [CrossRef]
- Leonov, G.A.; Kuznetsov, N.V.; Vagaitsev, V.I. Hidden attractor in smooth Chua systems. Phys. D Nonlinear Phenom. 2012, 241, 1482–1486. [Google Scholar] [CrossRef]
- Lin, X.; Zhou, S.; Li, H. Chaos and synchronization in complex fractional-order Chua’s system. Int. J. Bifurc. Chaos 2016, 26, 1650046. [Google Scholar] [CrossRef]
- Martínez, H.; Solís-Daun, J. Global stabilization of a bounded controlled system based on the Rössler system. J. Frankl. Inst. 2024, 361, 106692. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, X.K.; Li, M.; Zou, J.L. Controlling and tracking hyperchaotic Rössler system via active backstepping design. Chaos Solitons Fractals 2005, 26, 353–361. [Google Scholar] [CrossRef]
- Sprott, J.C. Some simple chaotic jerk functions. Am. J. Phys. 1997, 65, 537–543. [Google Scholar] [CrossRef]
- Tamba, V.K.; Kingni, S.T.; Kuiate, G.F.; Fotsin, H.B.; Talla, P.K. Coexistence of attractors in autonomous Van der Pol–Duffing jerk oscillator: Analysis, chaos control and synchronisation in its fractional-order form. Pramana 2018, 91, 1–11. [Google Scholar] [CrossRef]
- Yu, S.; Lu, J.; Leung, H.; Chen, G. Design and implementation of n-scroll chaotic attractors from a general jerk circuit. IEEE Trans. Circuits Syst. I Regul. Pap. 2005, 52, 1459–1476. [Google Scholar]
- Qin, C.; Sun, K.; He, S. Characteristic analysis of fractional-order memristor-based hypogenetic jerk system and its DSP implementation. Electronics 2021, 10, 841. [Google Scholar] [CrossRef]
- Zhang, X.; Li, C.; Dong, E.; Zhao, Y.; Liu, Z. A conservative memristive system with amplitude control and offset boosting. Int. J. Bifurc. Chaos 2022, 32, 2250057. [Google Scholar] [CrossRef]
- Li, C.; Sprott, J.C. Amplitude control approach for chaotic signals. Nonlinear Dyn. 2013, 73, 1335–1341. [Google Scholar] [CrossRef]
- Wu, Q.; Hong, Q.; Liu, X.; Wang, X.; Zeng, Z. A novel amplitude control method for constructing nested hidden multi-butterfly and multiscroll chaotic attractors. Chaos Solitons Fractals 2020, 134, 109727. [Google Scholar] [CrossRef]
- Du, C.; Liu, L.; Zhang, Z.; Yu, S. A mem-element wien-bridge circuit with amplitude modulation and three kinds of offset boosting. Chaos Solitons Fractals 2022, 165, 112832. [Google Scholar] [CrossRef]
- Zhang, X.; Li, C.; Huang, K.; Liu, Z.; Yang, Y. A chaotic oscillator with three independent offset boosters and its simplified circuit implementation. IEEE Trans. Circuits Syst. II Express Briefs 2023, 71, 51–55. [Google Scholar] [CrossRef]
- Minati, L. Across neurons and silicon: Some experiments regarding the pervasiveness of nonlinear phenomena. Acta Phys. Pol. B. 2018, 49, 2029–2094. [Google Scholar] [CrossRef]
- Chua, L.O. Chua circuit. Scholarpedia 2007, 2, 1488. [Google Scholar] [CrossRef]
- Wang, G.Y.; Zheng, Y.; Liu, J.B. A hyperchaotic Lorenz attractor and its circuit implementation. Acta Phys. Sin. 2007, 56, 3313–3319. [Google Scholar]
- Chen, Y.; Lai, Q.; Zhang, Y.; Erkan, U.; Toktas, A. Complex dynamics of a new multiscroll memristive neural network. Nonlinear Dyn. 2024, 112, 8603–8616. [Google Scholar] [CrossRef]
- Bao, B.; Chen, L.; Bao, H.; Xu, Q.; Chen, M.; Wu, H. Burst patterns with Hopf bifurcation in a simplified FHN circuit. Nonlinear Dyn. 2024, 112, 10373–10390. [Google Scholar] [CrossRef]
- Lai, Q.; Wan, Z.; Kengne, L.K.; Kuate, P.D.K.; Chen, C. Two-memristor-based chaotic system with infinite coexisting attractors. IEEE Trans. Circuits Syst. II Express Briefs 2020, 68, 2197–2201. [Google Scholar] [CrossRef]
- Li, C.; Wang, D. An attractor with invariable Lyapunov exponent spectrum and its Jerk circuit implementation. Acta Phys. Sin. 2009, 58, 764. [Google Scholar]
- Wu, J.; Li, C.; Ma, X.; Lei, T.; Chen, G. Simplification of chaotic circuits with quadratic nonlinearity. IEEE Trans. Circuits Syst. II Express Briefs 2021, 69, 1837–1841. [Google Scholar] [CrossRef]
- Rajagopal, K.; Akgul, A.; Jafari, S.; Karthikeyan, A.; Çavuşoğlu, Ü.; Kacar, S. An exponential jerk system: Circuit realization, fractional order and time delayed form with dynamical analysis and its engineering application. J. Circuits Syst. Comput. 2019, 28, 1950087. [Google Scholar] [CrossRef]
- Adelakun, A.O.; Ogunjo, S.T. Active control and electronic simulation of a novel fractional order chaotic jerk system. Commun. Nonlinear Sci. Numer. Simul. 2024, 130, 107734. [Google Scholar] [CrossRef]
- Xu, Q.; Ding, X.; Wang, N.; Chen, B.; Parastesh, F.; Chen, M. Spiking activity in a memcapacitive and memristive emulator-based bionic circuit. Chaos Solitons Fractals 2024, 187, 115339. [Google Scholar] [CrossRef]
- Sprott, J.C. Elegant Chaos: Algebraically Simple Chaotic Flows; World Scientific: Singapore, 2010. [Google Scholar]
- Minati, L.; Gambuzza, L.V.; Thio, W.J.; Sprott, J.C.; Frasca, M. A chaotic circuit based on a physical memristor. Chaos Solitons Fractals 2020, 138, 109990. [Google Scholar] [CrossRef]
- Cen, X.; Li, C.; Liu, W.; Yang, Y.; Minati, L. A Novel Analog Electronic Circuit for Versatile Fractional Exponentiation. Int. J. Bifurc. Chaos 2025, in press.
- Amirany, A.; Mohebbi, L. SQTRNG: Spintronic Quaternary True Random Number Generator. In Spin; World Scientific Publishing Company: Singapore, 2024. [Google Scholar]
b | Attractor | Lyapunov Exponents | DKY |
---|---|---|---|
1.6 | period 1 | (0, −0.0744, −0.9256) | 1 |
2.0 | period 2 | (0, −0.1663, −0.8337) | 1 |
2.7 | period 3 | (0, −0.0029, −0.9961) | 1 |
2.9 | chaos | (0.0746, 0, −1.0746) | 2.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, M.; Li, C.; Cen, X.; Zhao, M.; Xu, Y.; Minati, L. A Chaotic Jerk Oscillator with Complete Control via Fractional Exponentiation and Its Experimental Analog Circuit Realization. Symmetry 2025, 17, 174. https://doi.org/10.3390/sym17020174
Shen M, Li C, Cen X, Zhao M, Xu Y, Minati L. A Chaotic Jerk Oscillator with Complete Control via Fractional Exponentiation and Its Experimental Analog Circuit Realization. Symmetry. 2025; 17(2):174. https://doi.org/10.3390/sym17020174
Chicago/Turabian StyleShen, Menghui, Chunbiao Li, Xiaoliang Cen, Manyu Zhao, Yuanxiao Xu, and Ludovico Minati. 2025. "A Chaotic Jerk Oscillator with Complete Control via Fractional Exponentiation and Its Experimental Analog Circuit Realization" Symmetry 17, no. 2: 174. https://doi.org/10.3390/sym17020174
APA StyleShen, M., Li, C., Cen, X., Zhao, M., Xu, Y., & Minati, L. (2025). A Chaotic Jerk Oscillator with Complete Control via Fractional Exponentiation and Its Experimental Analog Circuit Realization. Symmetry, 17(2), 174. https://doi.org/10.3390/sym17020174