Density-Induced Hadron–Quark Crossover via the Formation of Cooper Triples
Abstract
:1. Introduction
2. Model and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
QCD | Quantum chromodynamics |
BCS | Bardeen–Cooper–Schrieffer |
BEC | Bose–Einstein condensation |
References
- Baym, G.; Hatsuda, T.; Kojo, T.; Powell, P.D.; Song, Y.; Takatsuka, T. From hadrons to quarks in neutron stars: A review. Rep. Prog. Phys. 2018, 81, 056902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watts, A.L.; Andersson, N.; Chakrabarty, D.; Feroci, M.; Hebeler, K.; Israel, G.; Lamb, F.K.; Miller, M.C.; Morsink, S.; Özel, F.; et al. Colloquium: Measuring the neutron star equation of state using x-ray timing. Rev. Mod. Phys. 2016, 88, 021001. [Google Scholar] [CrossRef] [Green Version]
- Baiotti, L. Gravitational waves from neutron star mergers and their relation to the nuclear equation of state. Prog. Part. Nucl. Phys. 2019, 109, 103714. [Google Scholar] [CrossRef] [Green Version]
- Lattimer, J.M. The nuclear equation of state and neutron star masses. Annu. Rev. Nucl. Part. Sci. 2012, 62, 485–515. [Google Scholar]
- Nagata, K. Finite-density lattice QCD and sign problem: Current status and open problems. Prog. Part. Nucl. Phys. 2022, 127, 103991. [Google Scholar] [CrossRef]
- McLerran, L.; Pisarski, R.D. Phases of dense quarks at large Nc. Nucl. Phys. A 2007, 796, 83–100. [Google Scholar] [CrossRef] [Green Version]
- Fukushima, K.; Hatsuda, T. The phase diagram of dense QCD. Rep. Prog. Phys. 2010, 74, 014001. [Google Scholar]
- Masuda, K.; Hatsuda, T.; Takatsuka, T. Hadron–Quark crossover and massive hybrid stars with strangeness. Astrophys. J. 2013, 764, 12. [Google Scholar]
- Masuda, K.; Hatsuda, T.; Takatsuka, T. Hadron–quark crossover and massive hybrid stars. Prog. Theor. Exp. Phys. 2013, 2013, 073D01. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.J.; Baiotti, L.; Kojo, T.; Takami, K.; Sotani, H.; Togashi, H.; Hatsuda, T.; Nagataki, S.; Fan, Y.Z. Merger and Postmerger of Binary Neutron Stars with a Quark-Hadron Crossover Equation of State. Phys. Rev. Lett. 2022, 129, 181101. [Google Scholar] [CrossRef]
- Kedia, A.; Kim, H.I.; Suh, I.S.; Mathews, G.J. Binary neutron star mergers as a probe of quark-hadron crossover equations of state. Phys. Rev. D 2022, 106, 103027. [Google Scholar] [CrossRef]
- Kojo, T.; Baym, G.; Hatsuda, T. Implications of NICER for Neutron Star Matter: The QHC21 Equation of State. Astrophys. J. 2022, 934, 46. [Google Scholar] [CrossRef]
- Kojo, T. QCD equations of state and speed of sound in neutron stars. AAPPS Bull. 2021, 31, 11. [Google Scholar] [CrossRef]
- McLerran, L.; Reddy, S. Quarkyonic Matter and Neutron Stars. Phys. Rev. Lett. 2019, 122, 122701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kojo, T.; Suenaga, D. Peaks of sound velocity in two color dense QCD: Quark saturation effects and semishort range correlations. Phys. Rev. D 2022, 105, 076001. [Google Scholar] [CrossRef]
- Iida, K.; Itou, E.; Lee, T.G. Two-colour QCD phases and the topology at low temperature and high density. J. High Energy Phys. 2020, 2020, 181. [Google Scholar]
- Iida, K.; Itou, E. Velocity of Sound beyond the High-Density Relativistic Limit from Lattice Simulation of Dense Two-Color QCD. Prog. Theor. Exp. Phys. 2022, 2022, 111B01. [Google Scholar] [CrossRef]
- Chen, Q.; Stajic, J.; Tan, S.; Levin, K. BCS–BEC crossover: From high temperature superconductors to ultracold superfluids. Phys. Rep. 2005, 412, 1–88. [Google Scholar]
- Zwerger, W. The BCS-BEC Crossover and the Unitary Fermi Gas; Springer: Berlin/Heidelberg, Germany, 2011; Volume 836. [Google Scholar]
- Randeria, M.; Taylor, E. Crossover from Bardeen-Cooper-Schrieffer to Bose-Einstein condensation and the unitary Fermi gas. Annu. Rev. Condens. Matter Phys. 2014, 5, 209–232. [Google Scholar]
- Strinati, G.C.; Pieri, P.; Röpke, G.; Schuck, P.; Urban, M. The BCS–BEC crossover: From ultra-cold Fermi gases to nuclear systems. Phys. Rep. 2018, 738, 1–76. [Google Scholar] [CrossRef] [Green Version]
- Ohashi, Y.; Tajima, H.; van Wyk, P. BCS–BEC crossover in cold atomic and in nuclear systems. Prog. Part. Nucl. Phys. 2020, 111, 103739. [Google Scholar] [CrossRef]
- Richie-Halford, A.; Drut, J.E.; Bulgac, A. Emergence of a Pseudogap in the BCS-BEC Crossover. Phys. Rev. Lett. 2020, 125, 060403. [Google Scholar] [CrossRef] [PubMed]
- Durel, D.; Urban, M. BCS-BEC Crossover Effects and Pseudogap in Neutron Matter. Universe 2020, 6, 8. [Google Scholar] [CrossRef]
- Tajima, H.; Liang, H. Role of the effective range in the density-induced BEC-BCS crossover. Phys. Rev. A 2022, 106, 043308. [Google Scholar] [CrossRef]
- Kasahara, S.; Watashige, T.; Hanaguri, T.; Kohsaka, Y.; Yamashita, T.; Shimoyama, Y.; Mizukami, Y.; Endo, R.; Ikeda, H.; Aoyama, K.; et al. Field-induced superconducting phase of FeSe in the BCS-BEC cross-over. Proc. Natl. Acad. Sci. USA 2014, 111, 16309–16313. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, T.; Ota, Y.; Tsuzuki, A.; Nagashima, T.; Fukushima, A.; Kasahara, S.; Matsuda, Y.; Matsuura, K.; Mizukami, Y.; Shibauchi, T.; et al. Bose-Einstein condensation superconductivity induced by disappearance of the nematic state. Sci. Adv. 2020, 6, eabb9052. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Kasahara, Y.; Nomoto, T.; Arita, R.; Nojima, T.; Iwasa, Y. Gate-controlled BCS-BEC crossover in a two-dimensional superconductor. Science 2021, 372, 190–195. [Google Scholar] [CrossRef]
- Suzuki, Y.; Wakamatsu, K.; Ibuka, J.; Oike, H.; Fujii, T.; Miyagawa, K.; Taniguchi, H.; Kanoda, K. Mott-Driven BEC-BCS Crossover in a Doped Spin Liquid Candidate κ-(BEDT-TTF)4Hg2.89Br8. Phys. Rev. X 2022, 12, 011016. [Google Scholar] [CrossRef]
- Pittel, S.; Engel, J.; Dukelsky, J.; Ring, P. The nucleus as a condensate of collective quark triplets. Phys. Lett. B 1990, 247, 185–190. [Google Scholar] [CrossRef]
- Yagi, K.; Hatsuda, T.; Miake, Y. Quark-Gluon Plasma: From Big Bang to Little Bang; Cambridge University Press: Cambridge, UK, 2005; Volume 23. [Google Scholar]
- Greiner, W.; Schramm, S.; Stein, E. Quantum Chromodynamics; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- O’Hara, K.M. Realizing analogues of color superconductivity with ultracold alkali atoms. New J. Phys. 2011, 13, 065011. [Google Scholar] [CrossRef]
- Nishida, Y. New Type of Crossover Physics in Three-Component Fermi Gases. Phys. Rev. Lett. 2012, 109, 240401. [Google Scholar] [CrossRef] [PubMed]
- Nishida, Y. Polaronic Atom-Trimer Continuity in Three-Component Fermi Gases. Phys. Rev. Lett. 2015, 114, 115302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrenacci, N.; Perali, A.; Pieri, P.; Strinati, G.C. Density-induced BCS to Bose-Einstein crossover. Phys. Rev. B 1999, 60, 12410–12418. [Google Scholar] [CrossRef] [Green Version]
- Niemann, P.; Hammer, H.W. Pauli-blocking effects and Cooper triples in three-component Fermi gases. Phys. Rev. A 2012, 86, 013628. [Google Scholar] [CrossRef] [Green Version]
- Kirk, T.; Parish, M.M. Three-body correlations in a two-dimensional SU(3) Fermi gas. Phys. Rev. A 2017, 96, 053614. [Google Scholar] [CrossRef] [Green Version]
- Tajima, H.; Tsutsui, S.; Doi, T.M.; Iida, K. Three-body crossover from a Cooper triple to a bound trimer state in three-component Fermi gases near a triatomic resonance. Phys. Rev. A 2021, 104, 053328. [Google Scholar] [CrossRef]
- Tajima, H.; Tsutsui, S.; Doi, T.M.; Iida, K. Cooper triples in attractive three-component fermions: Implication for hadron-quark crossover. Phys. Rev. Research 2022, 4, L012021. [Google Scholar] [CrossRef]
- Guo, Y.; Tajima, H. Stability against three-body clustering in one-dimensional spinless p-wave fermions. Phys. Rev. A 2022, 106, 043310. [Google Scholar] [CrossRef]
- Guo, Y.; Tajima, H. Competition between pairing and tripling in one-dimensional fermions with coexistent s-and p-wave interactions. arXiv 2022, arXiv:2210.07042. [Google Scholar]
- Kang, B.L.; Shi, M.Z.; Li, S.J.; Wang, H.H.; Zhang, Q.; Zhao, D.; Li, J.; Song, D.W.; Zheng, L.X.; Nie, L.P.; et al. Preformed Cooper Pairs in Layered FeSe-Based Superconductors. Phys. Rev. Lett. 2020, 125, 097003. [Google Scholar] [CrossRef]
- Bastiaans, K.M.; Chatzopoulos, D.; Ge, J.F.; Cho, D.; Tromp, W.O.; van Ruitenbeek, J.M.; Fischer, M.H.; de Visser, P.J.; Thoen, D.J.; Driessen, E.F.; et al. Direct evidence for Cooper pairing without a spectral gap in a disordered superconductor above Tc. Science 2021, 374, 608–611. [Google Scholar] [PubMed]
- Akagami, S.; Tajima, H.; Iida, K. Condensation of Cooper triples. Phys. Rev. A 2021, 104, L041302. [Google Scholar] [CrossRef]
- McKenney, J.R.; Jose, A.; Drut, J.E. Thermodynamics and static response of anomalous one-dimensional fermions via a quantum Monte Carlo approach in the worldline representation. Phys. Rev. A 2020, 102, 023313. [Google Scholar] [CrossRef]
- Liu, S.Y.F.; Rapp, R. T-matrix approach to quark-gluon plasma. Phys. Rev. C 2018, 97, 034918. [Google Scholar] [CrossRef] [Green Version]
- Thompson, R.H. Three-Dimensional Bethe-Salpeter Equation Applied to the Nucleon-Nucleon Interaction. Phys. Rev. D 1970, 1, 110–117. [Google Scholar] [CrossRef]
- Capstick, S.; Isgur, N. Baryons in a relativized quark model with chromodynamics. Phys. Rev. D 1986, 34, 2809–2835. [Google Scholar] [CrossRef]
- Takahashi, T.T.; Matsufuru, H.; Nemoto, Y.; Suganuma, H. Three-Quark Potential in SU(3) Lattice QCD. Phys. Rev. Lett. 2001, 86, 18–21. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, T.T.; Suganuma, H.; Nemoto, Y.; Matsufuru, H. Detailed analysis of the three-quark potential in SU(3) lattice QCD. Phys. Rev. D 2002, 65, 114509. [Google Scholar] [CrossRef] [Green Version]
- Richard, J.; Taxil, P. Ground state baryons in the non-relativistic quark model. Ann. Phys. 1983, 150, 267–286. [Google Scholar] [CrossRef]
- Carlson, J.; Kogut, J.; Pandharipande, V.R. Quark model for baryons based on quantum chromodynamics. Phys. Rev. D 1983, 27, 233–243. [Google Scholar] [CrossRef]
- Blask, W.; Bohn, U.; Huber, M.; Metsch, B.C.; Petry, H. Hadron spectroscopy with instanton induced quark forces. Zeitschrift für Physik A Atomic Nuclei 1990, 337, 327–335. [Google Scholar]
- Sogo, T.; Röpke, G.; Schuck, P. Many-body approach for quartet condensation in strong coupling. Phys. Rev. C 2010, 81, 064310. [Google Scholar] [CrossRef] [Green Version]
- Beyer, M.; Mattiello, S.; Frederico, T.; Weber, H. Three-quark clusters at finite temperatures and densities. Phys. Lett. B 2001, 521, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Jin, M.; Urban, M.; Schuck, P. BEC-BCS crossover and the liquid-gas phase transition in hot and dense nuclear matter. Phys. Rev. C 2010, 82, 024911. [Google Scholar] [CrossRef]
- Tajima, H.; Naidon, P. Quantum chromodynamics (QCD)-like phase diagram with Efimov trimers and Cooper pairs in resonantly interacting SU(3) Fermi gases. New J. Phys. 2019, 21, 073051. [Google Scholar] [CrossRef]
- Holdom, B.; Ren, J.; Zhang, C. Quark Matter May Not Be Strange. Phys. Rev. Lett. 2018, 120, 222001. [Google Scholar] [CrossRef] [Green Version]
- Alford, M.G.; Schmitt, A.; Rajagopal, K.; Schäfer, T. Color superconductivity in dense quark matter. Rev. Mod. Phys. 2008, 80, 1455–1515. [Google Scholar] [CrossRef] [Green Version]
- Röpke, G.; Blaschke, D.; Schulz, H. Pauli quenching effects in a simple string model of quark/nuclear matter. Phys. Rev. D 1986, 34, 3499–3513. [Google Scholar] [CrossRef]
- Blaschke, D.; Grigorian, H.; Röpke, G. Chirally Improved Quark Pauli Blocking in Nuclear Matter and Applications to Quark Deconfinement in Neutron Stars. Particles 2020, 3, 477–499. [Google Scholar] [CrossRef]
- Barabanov, M.; Bedolla, M.; Brooks, W.; Cates, G.; Chen, C.; Chen, Y.; Cisbani, E.; Ding, M.; Eichmann, G.; Ent, R.; et al. Diquark correlations in hadron physics: Origin, impact and evidence. Prog. Part. Nucl. Phys. 2021, 116, 103835. [Google Scholar] [CrossRef]
- Roberts, C.D. Empirical Consequences of Emergent Mass. Symmetry 2020, 12, 1468. [Google Scholar] [CrossRef]
- Hatsuda, T.; Tachibana, M.; Yamamoto, N.; Baym, G. New Critical Point Induced By the Axial Anomaly in Dense QCD. Phys. Rev. Lett. 2006, 97, 122001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadanoff, L.P.; Baym, G. Quantum Statistical Mechanics: Green’s Function Methods in Equilibrium and Nonequilibrium Problems; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Wang, J.C.; Wang, Q.; Rischke, D.H. Baryon formation and dissociation in dense hadronic and quark matter. Phys. Lett. B 2011, 704, 347–353. [Google Scholar] [CrossRef] [Green Version]
- Barrois, B.C. Superconducting quark matter. Nucl. Phys. B 1977, 129, 390–396. [Google Scholar] [CrossRef]
- Shahrbaf, M.; Blaschke, D.; Typel, S.; Farrar, G.R.; Alvarez-Castillo, D.E. Sexaquark dilemma in neutron stars and its solution by quark deconfinement. Phys. Rev. D 2022, 105, 103005. [Google Scholar] [CrossRef]
- Nagata, K.; Nishimura, J.; Shimasaki, S. Complex Langevin calculations in finite density QCD at large μ/T with the deformation technique. Phys. Rev. D 2018, 98, 114513. [Google Scholar] [CrossRef] [Green Version]
- Ito, Y.; Matsufuru, H.; Namekawa, Y.; Nishimura, J.; Shimasaki, S.; Tsuchiya, A.; Tsutsui, S. Complex Langevin calculations in QCD at finite density. J. High Energy Phys. 2020, 2020, 144. [Google Scholar] [CrossRef]
- Berger, C.; Rammelmüller, L.; Loheac, A.; Ehmann, F.; Braun, J.; Drut, J. Complex Langevin and other approaches to the sign problem in quantum many-body physics. Phys. Rep. 2021, 892, 1–54. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tajima, H.; Tsutsui, S.; Doi, T.M.; Iida, K. Density-Induced Hadron–Quark Crossover via the Formation of Cooper Triples. Symmetry 2023, 15, 333. https://doi.org/10.3390/sym15020333
Tajima H, Tsutsui S, Doi TM, Iida K. Density-Induced Hadron–Quark Crossover via the Formation of Cooper Triples. Symmetry. 2023; 15(2):333. https://doi.org/10.3390/sym15020333
Chicago/Turabian StyleTajima, Hiroyuki, Shoichiro Tsutsui, Takahiro M. Doi, and Kei Iida. 2023. "Density-Induced Hadron–Quark Crossover via the Formation of Cooper Triples" Symmetry 15, no. 2: 333. https://doi.org/10.3390/sym15020333
APA StyleTajima, H., Tsutsui, S., Doi, T. M., & Iida, K. (2023). Density-Induced Hadron–Quark Crossover via the Formation of Cooper Triples. Symmetry, 15(2), 333. https://doi.org/10.3390/sym15020333