Existence of Small-Energy Solutions to Nonlocal Schrödinger-Type Equations for Integrodifferential Operators in ℝN
Abstract
:1. Introduction
2. Preliminaries
- (K1)
- , where ;
- (K2)
- there exist such that for all ;
- (K3)
- for all .
- (V)
- , , for all .
- (F1)
- satisfies the Carathéodory condition.
- (F2)
- There exist non-negative functions and such that
3. Main Result
- (F3)
- For any , there exists constant , such that for , where .
- (F4)
- uniformly for all .
- (D1)
- .
- (D2)
- (D3)
- as .
- (D4)
- I satisfies the -condition for every ,
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bertoin, J. Levy Processes. Cambridge Tracts in Mathematics; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Bjorland, C.; Caffarelli, L.; Figalli, A. A Non-local gradient dependent operators. Adv. Math. 2012, 230, 1859–1894. [Google Scholar] [CrossRef] [Green Version]
- Caffarelli, L. Nonlocal equations, drifts and games. In Nonlinear Partial Differential Equations, Abel Symposia; Springe: New York, NY, USA, 2012; Volume 7, pp. 37–52. [Google Scholar]
- Gilboa, G.; Osher, S. Nonlocal operators with applications to image processing. Multiscale Model. Simul. 2008, 7, 1005–1028. [Google Scholar] [CrossRef]
- Laskin, N. Fractional quantum mechanics and Levy path integrals. Phys. Lett. A 2000, 268, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2003, 339, 1–77. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. The restaurant at the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 2004, 37, 161–208. [Google Scholar] [CrossRef]
- Ge, B. Multiple solutions of nonlinear schrödinger equation with the fractional Laplacian. Nonlinear Anal. Real World Appl. 2016, 30, 236–247. [Google Scholar] [CrossRef]
- Teng, K. Multiple solutions for a class of fractional Schrödinger equations in ℝN. Nonlinear Anal. Real World Appl. 2015, 21, 76–86. [Google Scholar] [CrossRef]
- Zang, H.; Xu, J.; Zhang, F. Existence and multiplicity of solutions for superlinear fractional schrödinger equations in ℝN. J. Math. Phys. 2015, 56, 1–13. [Google Scholar]
- Autuori, G.; Pucci, P. Elliptic problems involving the fractional Laplacian in ℝN. J. Differ. Equ. 2013, 255, 2340–2362. [Google Scholar] [CrossRef]
- Barrios, B.; Colorado, E.; de Pablo, A.; Sanchez, U. On some critical problems for the fractional Laplacian operator. J. Differ. Equ. 2012, 252, 6133–6162. [Google Scholar] [CrossRef]
- Brasco, L.; Parini, E.; Squassina, M. Stability of variational eigenvalues for the fractional p-Laplacian. Discrete Contin. Dyn. Syst. 2016, 36, 1813–1845. [Google Scholar] [CrossRef]
- Figueiredo, G.; Siciliano, G.A. Multiplicity result via Ljusternick-Schnirelmann category and Morse theory for a fractional schrödinger equation in ℝN. Nonlinear Differ. Equ. Appl. 2016, 23, 12. [Google Scholar] [CrossRef] [Green Version]
- Iannizzotto, A.; Liu, S.; Perera, K.; Squassina, M. Existence results for fractional p-Laplacian problems via Morse theory. Adv. Calc. Var. 2016, 9, 101–125. [Google Scholar] [CrossRef] [Green Version]
- Lehrer, R.; Maia, L.A.; Squassina, M. On fractional p-Laplacian problems with weight. Differ. Integral Equ. 2015, 28, 15–28. [Google Scholar]
- Perera, K.; Squassina, M.; Yang, Y. Bifurcation and multiplicity results for critical fractional p-Laplacian problems. Math. Nachr. 2016, 289, 332–342. [Google Scholar] [CrossRef] [Green Version]
- Servadei, R. Infinitely many solutions for fractional Laplace equations with subcritical nonlinearity. Contemp. Math. 2013, 595, 317–340. [Google Scholar]
- Xu, J.; Wei, Z.; Dong, W. Existence of weak solutions for a fractional Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 2015, 22, 1215–1222. [Google Scholar] [CrossRef]
- Caliciotti, A.; Fasano, G.; Nash, S.G.; Roma, M. An adaptive truncation criterion, for linesearch-based truncated Newton methods in large scale nonconvex optimization. Oper. Res. Lett. 2018, 46, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Caliciotti, A.; Fasano, G.; Nash, S.G.; Roma, M. Data and performance profiles applying an adaptive truncation criterion, within linesearch-based truncated Newton methods, in large scale nonconvex optimization. Data Brief. 2018, 17, 246–255. [Google Scholar] [CrossRef]
- Vergara, V.; Zacher, R. A priori bounds for degenerate and singular evolutionary partial integro-differential equations. Nonlinear Anal. 2010, 73, 3572–3585. [Google Scholar] [CrossRef] [Green Version]
- Winkert, P.; Zacher, R. A priori bounds for weak solutions to elliptic equations with nonstandard growth. Discrete Contin. Dyn. Syst. Ser. S 2012, 5, 865–878. [Google Scholar]
- Choi, E.B.; Kim, J.-M.; Kim, Y.-H. Infinitely many solutions for equations of p(x)-Laplace type with the nonlinear Neumann boundary condition. Proc. R. Soc. Edinb. Sect. A 2018, 148, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Bartsch, T.; Willem, M. On an elliptic equation with concave and convex nonlinearities. Proc. Am. Math. Soc. 1995, 123, 3555–3561. [Google Scholar] [CrossRef]
- Bartsch, T.; Wang, Z.-Q. Existence and multiplicity results for some superlinear elliptic problems on ℝN. Comm. Partial Differ. Equ. 1995, 20, 1725–1741. [Google Scholar] [CrossRef]
- Ambrosetti, A.; Rabinowitz, P. Dual variational methods in critical point theory and applications. J. Funct. Anal. 1973, 14, 349–381. [Google Scholar] [CrossRef] [Green Version]
- Alves, C.O.; Liu, S.B. On superlinear p(x)-Laplacian equations in ℝN. Nonlinear Anal. 2010, 73, 2566–2579. [Google Scholar] [CrossRef]
- Dai, G.; Hao, R. Existence of solutions for a p(x)-Kirchhoff-type equation. J. Math. Anal. Appl. 2009, 359, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-M.; Kim, Y.-H.; Lee, J. Existence and multiplicity of solutions for Kirchhoff-Schrödinger type equations involving p(x)-Laplacian on the whole space. Nonlinear Anal. Real World Appl. 2019, 45, 620–649. [Google Scholar]
- Kim, J.-M.; Kim, Y.-H.; Lee, J. Multiplicity of small or large energy solutions for Kirchhoff–Schrödinger-type equations involving the fractional p-Laplacian in ℝN. Symmetry 2018, 10, 436. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Tang, X.H. Existence of infinitely many solutions for p-Laplacian equations in ℝN. Nonlinear Anal. 2013, 92, 72–81. [Google Scholar] [CrossRef]
- Liu, S.B. On ground states of superlinear p-Laplacian equations in ℝN. J. Math. Anal. Appl. 2010, 361, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.B. On superlinear problems without Ambrosetti and Rabinowitz condition. Nonlinear Anal. 2010, 73, 788–795. [Google Scholar] [CrossRef]
- Liu, S.B.; Li, S.J. Infinitely many solutions for a superlinear elliptic equation. Acta Math. Sin. (Chin. Ser.) 2003, 46, 625–630. [Google Scholar]
- Miyagaki, O.H.; Hurtado, E.J.; Rodrigues, R.S. Existence and multiplicity of solutions for a class of elliptic equations without Ambrosetti-Rabinowitz type conditions. J. Dyn. Diff. Equ. 2018, 30, 405–432. [Google Scholar]
- Zou, W. Variant fountain theorems and their applications. Manuscripta Math. 2001, 104, 343–358. [Google Scholar] [CrossRef]
- Wang, Z.-Q. Nonlinear boundary value problems with concave nonlinearities near the origin. Nonlinear Differ. Equ. Appl. 2001, 8, 15–33. [Google Scholar] [CrossRef]
- Heinz, H.P. Free Ljusternik-Schnirelman theory and the bifurcation diagrams of certain singular nonlinear problems. J. Differ. Equ. 1987, 66, 263–300. [Google Scholar] [CrossRef] [Green Version]
- Dràbek, P.; Kufner, A.; Nicolosi, F. Quasilinear Elliptic Equations with Degenerations and Singularities; Walter de Gruyter & Co.: Berlin, Germany, 1997. [Google Scholar]
- Guo, Z. Elliptic equations with indefinite concave nonlinearities near the origin. J. Math. Anal. Appl. 2010, 367, 273–277. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-H. Infinitely many small energy solutions for equations involving the fractional Laplacian in ℝN. J. Korean Math. Soc. 2018, 55, 1269–1283. [Google Scholar]
- Naimen, D. Existence of infinitely many solutions for nonlinear Neumann problems with indefinite coefficients. Electron. J. Differ. Equ. 2014, 2014, 181. [Google Scholar]
- Tan, Z.; Fang, F. On superlinear p(x)-Laplacian problems without Ambrosetti and Rabinowitz condition. Nonlinear Anal. 2012, 75, 3902–3915. [Google Scholar] [CrossRef]
- Adams, R.A.; Fournier, J.J.F. Sobolev Spaces, 2nd ed.; Academic Press: New York, NY, USA; London, UK, 2003. [Google Scholar]
- Nezza, E.D.; Palatucci, G.; Valdinoci, E. Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 2012, 136, 521–573. [Google Scholar] [CrossRef]
- Xiang, M.; Zhang, B.; Ferrara, M. Existence of solutions for Kirchhoff type problem involving the non-local fractional p-Laplacian. J. Math. Anal. Appl. 2015, 424, 1021–1041. [Google Scholar] [CrossRef]
- Demengel, F.; Demengel, G. Functional Spaces for the Theory of Elliptic Partial Differential Equations; Transl. from the 2007 French original by R. Ernè; Universitext; Springer: London, UK, 2012. [Google Scholar]
- Perera, K.; Squassina, M.; Yang, Y. Critical fractional p-Laplacian problems with possibly vanishing potentials. J. Math. Anal. Appl. 2016, 433, 818–831. [Google Scholar] [CrossRef]
- Torres Ledesma, C.E. Existence and symmetry result for fractional p-Laplacian in ℝn. Commun. Pure Appl. Anal. 2017, 16, 99–113. [Google Scholar] [CrossRef] [Green Version]
- Willem, M. Minimax Theorems; Birkhauser: Basel, Switzerland, 1996. [Google Scholar]
- Bonder, J.; Saintier, N.; Silva, A. The concentration-compactness principle for fractional order Sobolev spaces in unbounded domains and applications to the generalized fractional Brezis-Nirenberg problem. Nonlinear Differ. Equ. Appl. 2018, 25, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Zeidler, E. Nonlinear Functional Analysis and Its Applications. II/B: Nonlinear Monotone Operators; Springer: Berlin, Germany, 1990. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.I.; Kim, Y.-H.; Lee, J. Existence of Small-Energy Solutions to Nonlocal Schrödinger-Type Equations for Integrodifferential Operators in ℝN. Symmetry 2020, 12, 5. https://doi.org/10.3390/sym12010005
Lee JI, Kim Y-H, Lee J. Existence of Small-Energy Solutions to Nonlocal Schrödinger-Type Equations for Integrodifferential Operators in ℝN. Symmetry. 2020; 12(1):5. https://doi.org/10.3390/sym12010005
Chicago/Turabian StyleLee, Jun Ik, Yun-Ho Kim, and Jongrak Lee. 2020. "Existence of Small-Energy Solutions to Nonlocal Schrödinger-Type Equations for Integrodifferential Operators in ℝN" Symmetry 12, no. 1: 5. https://doi.org/10.3390/sym12010005
APA StyleLee, J. I., Kim, Y. -H., & Lee, J. (2020). Existence of Small-Energy Solutions to Nonlocal Schrödinger-Type Equations for Integrodifferential Operators in ℝN. Symmetry, 12(1), 5. https://doi.org/10.3390/sym12010005