Acid Mine Drainage Neutralization by Ultrabasic Rocks: A Chromite Mining Tailings Evaluation Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reference Material
2.2. Characterization of the Sample
2.3. Neutralazition Experiments
2.4. Artificial AMD
3. Results and Discussion
3.1. Sample Characterization
3.2. Neutralization Capacity
3.3. Kinetic Study
3.4. Liquid to Solid Ratio (L/S)
3.5. AMD Neutralazation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carvalho, F.P. Mining industry and sustainable development: Time for change. Food Energy Secur. 2017, 6, 61–77. [Google Scholar] [CrossRef]
- Kalisz, S.; Kibort, K.; Mioduska, J.; Lieder, M.; Małachowska, A. Waste management in the mining industry of metals ores, coal, oil and natural gas—A review. J. Environ. Manag. 2022, 304, 114239. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, E. Advances in reducing large volumes of environmentally harmful mine waste rocks and tailings. Gospod. Surowcami Miner./Miner. Resour. Manag. 2011, 27, 89–112. [Google Scholar]
- Preiner, M.; Xavier, J.C.; Sousa, F.L.; Zimorski, V.; Neubeck, A.; Lang, S.Q.; Chris Greenwell, H.; Kleinermanns, K.; Tüysüz, H.; McCollom, T.M.; et al. Serpentinization: Connecting geochemistry, ancient metabolism and industrial hydrogenation. Life 2018, 8, 41. [Google Scholar] [CrossRef]
- Oskierski, H.C.; Beinlich, A.; Mavromatis, V.; Altarawneh, M.; Dlugogorski, B.Z. Mg isotope fractionation during continental weathering and low temperature carbonation of ultramafic rocks. Geochim. Cosmochim. Acta 2019, 262, 60–77. [Google Scholar] [CrossRef]
- Breuninger, T.; Menschik, B.; Demharter, A.; Gamperl, M.; Thuro, K. Investigation of critical geotechnical, petrological and mineralogical parameters for landslides in deeply weathered dunite rock (Medellín, Colombia). Int. J. Environ. Res. Public Health 2021, 18, 11141. [Google Scholar] [CrossRef]
- Cavallo, A. Serpentinitic waste materials from the dimension stone industry: Characterization, possible reuses and critical issues. Resour. Policy 2018, 59, 17–23. [Google Scholar] [CrossRef]
- Tzamos, E.; Bussolesi, M.; Grieco, G.; Marescotti, P.; Crispini, L.; Kasinos, A.; Storni, N.; Simeonidis, K.; Zouboulis, A. Mineralogy and geochemistry of ultramafic rocks from rachoni magnesite mine, Gerakini (Chalkidiki, Northern Greece). Minerals 2020, 10, 934. [Google Scholar] [CrossRef]
- Acar, İ. Sintering properties of olivine and its utilization potential as a refractory raw material: Mineralogical and microstructural investigations. Ceram. Int. 2020, 46, 28025–28034. [Google Scholar] [CrossRef]
- Emami, S.M.; Ramezani, A.; Nemat, S. Sintering behavior of waste serpentine from abdasht chromite mines Abdasht chromite mines and kaolin blends. Ceram. Int. 2017, 43, 15189–15193. [Google Scholar] [CrossRef]
- Kelemen, P.B.; Aines, R.; Bennett, E.; Benson, S.M.; Carter, E.; Coggon, J.A.; De Obeso, J.C.; Evans, O.; Gadikota, G.; Dipple, G.M.; et al. In situ carbon mineralization in ultramafic rocks: Natural processes and possible engineered methods. Energy Procedia 2018, 146, 92–102. [Google Scholar] [CrossRef]
- Marín, O.; Valderrama, J.O.; Kraslawski, A.; Cisternas, L.A. Potential of tailing deposits in chile for the sequestration of carbon dioxide produced by power plants using ex-situ mineral carbonation. Minerals 2021, 11, 320. [Google Scholar] [CrossRef]
- Li, J.; Jacobs, A.D.; Hitch, M. Direct aqueous carbonation on olivine at a CO2 partial pressure of 6.5 MPa. Energy 2019, 173, 902–910. [Google Scholar] [CrossRef]
- Saran, R.K.; Arora, V.; Yadav, S. CO2 sequestration by mineral carbonation: A review. Glob. Nest J. 2018, 20, 497–503. [Google Scholar] [CrossRef]
- van Noort, R.; Mørkved, P.T.; Dundas, S.H. Acid neutralization by mining waste dissolution under conditions relevant for agricultural applications. Geosciences 2018, 8, 380. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, C.; Du, S.; Zhang, Z.; Lu, W.; Su, P.; Jiao, Y.; Zhao, Y. A review: The formation, prevention, and remediation of acid mine drainage. Environ. Sci. Pollut. Res. 2023, 30, 111871–111890. [Google Scholar] [CrossRef]
- García-Valero, A.; Martínez-Martínez, S.; Faz, A.; Rivera, J.; Acosta, J.A. Environmentally sustainable acid mine drainage remediation: Use of natural alkaline material. J. Water Process Eng. 2020, 33, 101064. [Google Scholar] [CrossRef]
- Daval, D.; Hellmann, R.; Martinez, I.; Gangloff, S.; Guyot, F. Lizardite serpentine dissolution kinetics as a function of pH and temperature, including effects of elevated pCO2. Chem. Geol. 2013, 351, 245–256. [Google Scholar] [CrossRef]
- Gerogianni, N.; Magganas, A.; Stamatakis, M.; Pomonis, P. Effectiveness of Olivine-Rich Ultrabasic Rocks from Greece on Acid Mine Drainage and Dairy Wastewater Treatment. In Proceedings of the International Conference IWWATV, Athens, Greece, 21–23 May 2015. [Google Scholar]
- Turingan, C.O.A.; Singson, G.B.; Melchor, B.T.; Alorro, R.D.; Beltran, A.B.; Orbecido, A.H. Evaluation of efficiencies of locally available neutralizing agents for passive treatment of acid mine drainage. Minerals 2020, 10, 845. [Google Scholar] [CrossRef]
- Rassios, A.; Tzamos, E.; Dilek, Y.; Bussolesi, M.; Grieco, G.; Batsi, A.; Gamaletsos, P.N. A structural approach to the genesis of chrome ores within the Vourinos ophiolite (Greece): Significance of ductile and brittle deformation processes in the formation of economic ore bodies in oceanic upper mantle peridotites. Ore Geol. Rev. 2020, 125, 103684. [Google Scholar] [CrossRef]
- Joint Center for Powder Diffraction Studies (JCPDS). Powder Diffraction File; International Centre for Diffraction Data: Newtown Square, PA, USA, 2004. [Google Scholar]
- CEN/TS 14997; Characterization of Waste—Leaching Behavior Tests—Influence of pH on Leaching with Continuous pH-Control. CEN (Comité Européen de Normalisation): Brussels, Belgium, 2006.
- Ryu, S.C.; Naidu, G.; Moon, H.; Vigneswaran, S. Selective copper recovery by membrane distillation and adsorption system from synthetic acid mine drainage. Chemosphere 2020, 260, 127528. [Google Scholar] [CrossRef] [PubMed]
- Gray, N.F.; O’Neill, C. Acid mine-drainage toxicity testing. Environ. Geochem. Health 1997, 19, 165–171. [Google Scholar] [CrossRef]
- Lyew, D.; Sheppard, J. Sizing Considerations for Gravel Beds Treating Acid Mine Drainage by Sulfate Reduction. J. Environ. Qual. 1999, 28, 1025–1030. [Google Scholar] [CrossRef]
- Jordan, S.N.; Redington, W.; Holland, L.B. Remediation of Metal Contaminated Simulated Acid Mine Drainage Using a Lab-Scale Spent Mushroom Substrate Wetland. Water Air Soil Pollut. 2021, 232, 220. [Google Scholar] [CrossRef]
- Luptakova, A.; Ubaldini, S.; Fornari, P.; MacIngova, E. Physical-chemical and biological-chemical methods for treatment of acid mine drainage. Chem. Eng. Trans. 2012, 28, 115–120. [Google Scholar] [CrossRef]
- Munyengabe, A.; Zvinowanda, C.; Zvimba, J.N.; Ramontja, J. Characterization and reusability suggestions of the sludge generated from a synthetic acid mine drainage treatment using sodium ferrate (VI). Heliyon 2020, 6, e05244. [Google Scholar] [CrossRef]
- Bernier, L.R. The potential use of serpentinite in the passive treatment of acid mine drainage: Batch experiments. Environ. Geol. 2005, 47, 670–684. [Google Scholar] [CrossRef]
- Kokkinos, E.; Peleka, E.; Zouboulis, A. Thermal Treatment of Serpentinized Olivine Wastes, Obtained from Chromite Mineral Enrichment Operations, as an Example of Circular Economy in the Mining Sector. Mater. Proc. 2023, 15, 38. [Google Scholar] [CrossRef]
- Villegas-Bolaños, P.A.; Gallego, J.A.; Dorkis, L.; Márquez, M.A. Glycerol valorization using Colombian olivine as a catalyst. Heliyon 2023, 9, 15561. [Google Scholar] [CrossRef]
- Petronijević, N.; Radovanović, D.; Štulović, M.; Sokić, M.; Jovanović, G.; Kamberović, Ž.; Stanković, S.; Stopic, S.; Onjia, A. Analysis of the Mechanism of Acid Mine Drainage Neutralization Using Fly Ash as an Alternative Material: A Case Study of the Extremely Acidic Lake Robule in Eastern Serbia. Water 2022, 14, 3244. [Google Scholar] [CrossRef]
- Oelkers, E.H.; Declercq, J.; Saldi, G.D.; Gislason, S.R.; Schott, J. Olivine dissolution rates: A critical review. Chem. Geol. 2018, 500, 1–19. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, H.; Fu, Y.; Zuo, K.; Gao, P.; Han, Y. Dissolution Property of Serpentine Surface and the Effect on Particle–Particle Interaction Behavior in Solution. Minerals 2023, 13, 799. [Google Scholar] [CrossRef]
- Wahlström, M.; Laine-Ylijoki, J.; Kaartinen, T. Acid Neutralization Capacity of Waste-Specification of Requirement Stated in Landfill Regulations; Nordic Council of Ministers: Copenhagen, Denmark, 2009. [Google Scholar]
- Roulia, M.; Alexopoulos, D.; Itskos, G.; Vasilatos, C. Lignite fly ash utilization for acid mine drainage neutralization and clean-up. Clean. Mater. 2022, 6, 100142. [Google Scholar] [CrossRef]
- Smičiklas, I.; Jović, M.; Janković, M.; Smiljanić, S.; Onjia, A. Environmental Safety Aspects of Solid Residues Resulting from Acid Mine Drainage Neutralization with Fresh and Aged Red Mud. Water Air Soil Pollut. 2021, 232, 490. [Google Scholar] [CrossRef]
- Nordstrom, D.K. Geochemical modeling of iron and aluminum precipitation during mixing and neutralization of acid mine drainage. Minerals 2020, 10, 547. [Google Scholar] [CrossRef]
- Iakovleva, E.; Mäkilä, E.; Salonen, J.; Sitarz, M.; Wang, S.; Sillanpää, M. Acid mine drainage (AMD) treatment: Neutralization and toxic elements removal with unmodified and modified limestone. Ecol. Eng. 2015, 81, 30–40. [Google Scholar] [CrossRef]
- Masindi, V.; Akinwekomi, V.; Maree, J.P.; Muedi, K.L. Comparison of mine water neutralisation efficiencies of different alkaline generating agents. J. Environ. Chem. Eng. 2017, 5, 3903–3913. [Google Scholar] [CrossRef]
- Sun, J.Z.; Wen, J.K.; Chen, B.W.; Wu, B. Mechanism of Mg2+ dissolution from olivine and serpentine: Implication for bioleaching of high-magnesium nickel sulfide ore at elevated pH. Int. J. Miner. Metall. Mater. 2019, 26, 1069–1079. [Google Scholar] [CrossRef]
- Weinberg, R.; Coyte, R.; Wang, Z.; Das, D.; Vengosh, A. Water quality implications of the neutralization of acid mine drainage with coal fly ash from India and the United States. Fuel 2022, 330, 125675. [Google Scholar] [CrossRef]
- Silva, D.; Weber, C.; Oliveira, C. Neutralization and uptake of pollutant cations from acid mine drainage (amd) using limestones and zeolites in a pilot-scale passive treatment system. Miner. Eng. 2021, 170, 107000. [Google Scholar] [CrossRef]
- Kaur, G.; Couperthwaite, S.J.; Hatton-Jones, B.W.; Millar, G.J. Alternative neutralisation materials for acid mine drainage treatment. J. Water Process Eng. 2018, 22, 46–58. [Google Scholar] [CrossRef]
- Liu, C.; Min, F.; Liu, L.; Chen, J. Hydration properties of alkali and alkaline earth metal ions in aqueous solution: A molecular dynamics study. Chem. Phys. Lett. 2019, 727, 31–37. [Google Scholar] [CrossRef]
- Kokkinos, E.; Soukakos, K.; Kostoglou, M.; Mitrakas, M. Cadmium, mercury, and nickel adsorption by tetravalent manganese feroxyhyte: Selectivity, kinetic modeling, and thermodynamic study. Environ. Sci. Pollut. Res. 2018, 25, 12263–12273. [Google Scholar] [CrossRef] [PubMed]
Parameter | Concentration Range (mg/L) | Concentration in This Work (mg/L) | Reagent |
---|---|---|---|
Al | 40–150 | 81 | Al2(SO4)3.18H2O |
Ca | 170–590 | 410 | CaO |
Cd | 0.2–12 | 8.7 | CdSO4.8/3H2O |
Cu | 0.5–50 | 24.5 | CuSO4.5H2O |
Fe | 70–400 | 295 | FeSO4.7H2O |
Mg | 35–220 | 122 | MgSO4.7H2O |
Mn | 3–65 | 35 | MnSO4.H2O |
Ni | 0.2–3.5 | 2 | NiSO4.6H2O |
Zn | 1.9–359 | 189 | ZnSO4.7H2O |
SO4 | 1500–6600 | 1819 | - |
Metal | Si | Mg | Fe | Na | Mn | Ca | Cr |
---|---|---|---|---|---|---|---|
% wt. | 20.2 | 24.9 | 5.1 | 0.8 | 0.08 | 0.06 | ND * |
Sample | Main Basic Structure | ANC (mol H+/kg) | Refs. |
---|---|---|---|
Coal fly ash | Calcite/Olivine | 0.2 | [33] |
Coal fly ash | Calcite | 3.1 | [36] |
Municipal waste fly ash | Calcite | 0.2–1.4 | [36] |
Peat fly ash | Calcite | 0.5 | [36] |
Steel slag | - | 1.8 and 4.5 | [36] |
Blast furnace slag | - | 1 | [36] |
Ni-smelter slag | - | 0 | [36] |
Chromite mining ultrabasic rock | Olivine | 0.18 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokkinos, E.; Kotsali, V.; Tzamos, E.; Zouboulis, A. Acid Mine Drainage Neutralization by Ultrabasic Rocks: A Chromite Mining Tailings Evaluation Case Study. Sustainability 2024, 16, 8967. https://doi.org/10.3390/su16208967
Kokkinos E, Kotsali V, Tzamos E, Zouboulis A. Acid Mine Drainage Neutralization by Ultrabasic Rocks: A Chromite Mining Tailings Evaluation Case Study. Sustainability. 2024; 16(20):8967. https://doi.org/10.3390/su16208967
Chicago/Turabian StyleKokkinos, Evgenios, Vasiliki Kotsali, Evangelos Tzamos, and Anastasios Zouboulis. 2024. "Acid Mine Drainage Neutralization by Ultrabasic Rocks: A Chromite Mining Tailings Evaluation Case Study" Sustainability 16, no. 20: 8967. https://doi.org/10.3390/su16208967
APA StyleKokkinos, E., Kotsali, V., Tzamos, E., & Zouboulis, A. (2024). Acid Mine Drainage Neutralization by Ultrabasic Rocks: A Chromite Mining Tailings Evaluation Case Study. Sustainability, 16(20), 8967. https://doi.org/10.3390/su16208967