A Review on Liquid Hydrogen Storage: Current Status, Challenges and Future Directions
Abstract
:1. Introduction
2. Liquid Hydrogen Characteristics
2.1. Ortho-to-Para Conversion
2.2. Boil-Off Losses
3. Liquid Hydrogen Storage
3.1. Storage Tank Insulation and Materials
3.2. Literature Review
3.2.1. Bibliometric Analysis
3.2.2. Reports
3.2.3. Conceptual Studies
3.2.4. Patents
3.3. Techno-Economic Analysis
4. Challenges and Future Directions
- Insulation plays a key role in keeping LH2 at −253 °C. Commercial LH2 tanks employ perlite insulation with a vacuum to limit the boil-off rate by 1.0% per day. However, this boil-off rate is quite high and needs to be reduced.
- OPC heat of conversion (527 kJ/kg) is higher than heat of vaporization (447 kJ/kg), which leads to a larger heat load and a high boil-off rate. To control and reduce boil-off, a large amount of energy is required. Minimization of this energy is critical for cost-effective LH2 storage.
- Storage at −253 °C requires highly sophisticated equipment and design. In addition, a large amount of energy is required to keep LH2 at −253 °C. The design, equipment, refrigeration, energy, and other necessities of the LH2 storage tank are cost-intensive. Reducing this cost will be essential for effective long-term LH2 storage.
- During the transportation of LH2, the boil-off rate increases due to sloshing and splashing. To minimize this, the design of the storage tank should be suitable enough to control the pressure built inside the storage tank.
- To improve the energy efficiency of LH2 storage, the design and structure of the storage tank can be improved. The application of an internal integrated refrigeration system (IIRS) by NASA is an attempt in this regard. However, it is very challenging to devise an improvement owing to insulation requirements and low-temperature storage.
- The challenges associated with LH2 storage including tank geometry, tank material, H2 embrittlement, permeation, and process safety must be addressed.
- Academia and industry are both pillars for the improvement and commercialization of any process. The cooperation of academic and industry research needs to be further strengthened. This can be done by establishing joint research programs to utilize the research expertise of academic researchers and to apply the expertise of industries in commercializing the technology.
- The detailed techno-economic assessment of storage tanks must be considered to compare alternatives with respect to cost and efficiency.
- The energy-efficient LH2 storage can be a game changer. Therefore, government policies and resources should be diverted towards research and applications of LH2 storage.
- Further, research on minimizing and utilizing boil-off losses has to be focused on, and alternatives must be considered. In addition, the research on minimizing the boil-off losses in automobile applications requires further consideration. Similarly, more work needs to be done regarding the insulation of the LH2 storage tank. The studies can focus on insulation materials, insulation types, and their integration with internal refrigeration systems.
- It is necessary to develop a lightweight, compact, strong storage tank.
5. Conclusions
- Owing to its very low liquefaction temperature and ortho-para conversion, the storage of LH2 is critical and challenging.
- Reducing the boil-off rate is an essential and critical part of LH2 storage.
- Improvements in tank insulation can reduce boil-off losses.
- Multi-layer insulation with an internal refrigeration system can reduce boil-offs and improve LH2 storage.
- Utilization of boil-offs can help with the design of efficient storage systems.
- The boil-offs can be used to exchange cold energy and produce power using a small-scale fuel scale.
- Reducing boil-offs during LH2 transportation must be urgently addressed.
- The energy-efficient and cost-effective design of the storage tank is an essential part of the H2 supply chain.
- The economics of LH2 storage can be improved by developing heat-resistive material that can withstand very low temperatures.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stetson, N.T.; McWhorter, S.; Ahn, C.C. Introduction to hydrogen storage. In Compendium of Hydrogen Energy; Elsevier: Amsterdam, The Netherlands, 2016; pp. 3–25. [Google Scholar] [CrossRef]
- Peschel, A. Industrial Perspective on Hydrogen Purification, Compression, Storage, and Distribution. Fuel Cells 2020, 20, 385–393. [Google Scholar] [CrossRef]
- Naquash, A.; Riaz, A.; Lee, H.; Qyyum, M.A.; Lee, S.; Lam, S.S.; Lee, M. Hydrofluoroolefin-based mixed refrigerant for enhanced performance of hydrogen liquefaction process. Int. J. Hydrogen Energy 2022, 47, 41648–41662. [Google Scholar] [CrossRef]
- Naquash, A.; Riaz, A.; Qyyum, M.A.; Kim, G.; Lee, M. Process knowledge inspired opportunistic approach for thermodynamically feasible and efficient design of hydrogen liquefaction process. Int. J. Hydrogen Energy 2022, 48, 26583–26598. [Google Scholar] [CrossRef]
- Valenti, G. Hydrogen liquefaction and liquid hydrogen storage. In Compendium of Hydrogen Energy Volume 2: Hydrogen Storage, Transportation and Infrastructure; Gupta, R.B., Basile, A., Veziroğlu, T.N., Eds.; Woodhead Publishing: London, UK, 2016; pp. 27–51. [Google Scholar] [CrossRef]
- Riaz, A.; Qyyum, M.A.; Hussain, A.; Lee, M. Significance of ortho-para hydrogen conversion in the performance of hydrogen liquefaction process. Int. J. Hydrogen Energy 2022, 48, 26568–26582. [Google Scholar] [CrossRef]
- Kang, D.-H.; An, J.-H.; Lee, C.-J. Numerical modeling and optimization of thermal insulation for liquid hydrogen storage tanks. Energy 2024, 291, 130143. [Google Scholar] [CrossRef]
- Jiang, Y.; Yu, Y.; Wang, Z.; Zhang, S.; Cao, J. CFD simulation of heat transfer and phase change characteristics of the cryogenic liquid hydrogen tank under microgravity conditions. Int. J. Hydrogen Energy 2023, 48, 7026–7037. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Zhou, G. Study on thermal stratification in liquid hydrogen tank under different gravity levels. Int. J. Hydrogen Energy 2018, 43, 9369–9378. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, G.; Li, Y.; Gao, P. Thermal performance of liquid hydrogen tank in reduced gravity. Adv. Space Res. 2018, 62, 957–966. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Xie, F.; Zhou, K. Thermal performance of foam/MLI for cryogenic liquid hydrogen tank during the ascent and on orbit period. Appl. Therm. Eng. 2016, 98, 430–439. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, L.; Jin, Y.; Li, Y. Development of thermal stratification in a rotating cryogenic liquid hydrogen tank. Int. J. Hydrogen Energy 2015, 40, 15067–15077. [Google Scholar] [CrossRef]
- Xu, W.; Li, Q.; Huang, M. Design and analysis of liquid hydrogen storage tank for high-altitude long-endurance remotely-operated aircraft. Int. J. Hydrogen Energy 2015, 40, 16578–16586. [Google Scholar] [CrossRef]
- Tang, S.; Zhang, Z.; Xu, L.; Qin, H.; Dong, J.; Lv, Q.; Han, J.; Song, F. Ultrafine nickel-rhodium nanoparticles anchored on two-dimensional vanadium carbide for high performance hydrous hydrazine decomposition at mild conditions. J. Colloid Interface Sci. 2024, 669, 228–235. [Google Scholar] [CrossRef]
- Zhang, Z.; Tang, S.; Xu, L.; Wang, J.; Li, A.; Jing, M.; Yang, X.; Song, F. Encapsulation of ruthenium oxide nanoparticles in nitrogen-doped porous carbon polyhedral for pH-universal hydrogen evolution electrocatalysis. Int. J. Hydrogen Energy 2024, 74, 10–16. [Google Scholar] [CrossRef]
- Yang, X.; Bulushev, D.A.; Yang, J.; Zhang, Q. New Liquid Chemical Hydrogen Storage Technology. Energies 2022, 15, 6360. [Google Scholar] [CrossRef]
- Yang, X.; Ullah, Z.; Stoddart, J.F.; Yavuz, C.T. Porous Organic Cages. Chem. Rev. 2023, 123, 4602–4634. [Google Scholar] [CrossRef]
- Yang, X.; Chen, L.; Liu, H.; Kurihara, T.; Horike, S.; Xu, Q. Encapsulating Ultrastable Metal Nanoparticles within Reticular Schiff Base Nanospaces for Enhanced Catalytic Performance. Cell Rep. Phys. Sci. 2021, 2, 100289. [Google Scholar] [CrossRef]
- Yartys, V.A.; Lototsky, M.V. An Overview of Hydrogen Storage Methods. Hydrog. Mater. Sci. Chem. Carbon Nanomater. 2004, 172, 75–104. [Google Scholar] [CrossRef]
- Züttel, A. Materials for hydrogen storage. Mater. Today 2003, 6, 24–33. [Google Scholar] [CrossRef]
- Eberle, U.; Felderhoff, M.; Schüth, F. Chemical and physical solutions for hydrogen storage. Angew. Chem.-Int. Ed. 2009, 48, 6608–6630. [Google Scholar] [CrossRef]
- Durbin, D.J.; Malardier-Jugroot, C. Review of hydrogen storage techniques for on board vehicle applications. Int. J. Hydrogen Energy 2013, 38, 14595–14617. [Google Scholar] [CrossRef]
- Sharma, S.; Ghoshal, S.K. Hydrogen the future transportation fuel: From production to applications. Renew. Sustain. Energy Rev. 2015, 43, 1151–1158. [Google Scholar] [CrossRef]
- Qiu, Y.; Yang, H.; Tong, L.; Wang, L. Research Progress of Cryogenic Materials for Storage and Transportation of Liquid Hydrogen. Metals 2021, 11, 1101. [Google Scholar] [CrossRef]
- Abdalla, A.M.; Hossain, S.; Nisfindy, O.B.; Azad, A.T.; Dawood, M.; Azad, A.K. Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Convers. Manag. 2018, 165, 602–627. [Google Scholar] [CrossRef]
- Andersson, J.; Grönkvist, S. Large-scale storage of hydrogen. Int. J. Hydrogen Energy 2019, 44, 11901–11919. [Google Scholar] [CrossRef]
- Yatsenko, E.A.; Goltsman, B.M.; Novikov, Y.V.; Izvarin, A.I.; Rusakevich, I.V. Review on modern ways of insulation of reservoirs for liquid hydrogen storage. Int. J. Hydrogen Energy 2022, 47, 41046–41054. [Google Scholar] [CrossRef]
- Aziz, M. Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety. Energies 2021, 14, 5917. [Google Scholar] [CrossRef]
- Kurtz, J.; Sprik, S.; Bradley, T.H. Review of transportation hydrogen infrastructure performance and reliability. Int. J. Hydrogen Energy 2019, 44, 12010–12023. [Google Scholar] [CrossRef]
- Rivard, E.; Trudeau, M.; Zaghib, K. Hydrogen Storage for Mobility: A Review. Materials 2019, 12, 1973. [Google Scholar] [CrossRef]
- Abe, J.O.; Popoola, A.P.I.; Ajenifuja, E.; Popoola, O.M. Hydrogen energy, economy and storage: Review and recommendation. Int. J. Hydrogen Energy 2019, 44, 15072–15086. [Google Scholar] [CrossRef]
- Ghorbani, B.; Zendehboudi, S.; Saady, N.M.C.; Duan, X.; Albayati, T.M. Strategies To Improve the Performance of Hydrogen Storage Systems by Liquefaction Methods: A Comprehensive Review. ACS Omega 2023, 8, 18358–18399. [Google Scholar] [CrossRef]
- Valenti, G. Hydrogen Liquefaction and Liquid Hydrogen Storage; Elsevier Ltd.: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Aspentech. Aspen HYSYS 2024. Available online: https://www.aspentech.com/en/products/engineering/aspen-hysys (accessed on 18 September 2024).
- Naquash, A.; Abdul, M.; Min, S.; Lee, S.; Lee, M. Carbon-dioxide-precooled hydrogen liquefaction process : An innovative approach for performance enhancement—Energy, exergy, and economic perspectives. Energy Convers. Manag. 2022, 251, 114947. [Google Scholar] [CrossRef]
- Harkness, R.W.; Deming, W.E. The Equilibrium of Para and Ortho Hydrogen. J. Am. Chem. Soc. 1932, 54, 2850–2852. [Google Scholar] [CrossRef]
- McCarty, R.D.; Hord, J.; Roder, H.M. Selected Properties of Hydrogen (Engineering Design Data); National Engineering Lab. (NBS): Boulder, CO, USA, 1981. [Google Scholar]
- Qyyum, M.A.; Riaz, A.; Naquash, A.; Haider, J.; Qadeer, K.; Nawaz, A.; Lee, H.; Lee, M. 100% saturated liquid hydrogen production: Mixed-refrigerant cascaded process with two-stage ortho-to-para hydrogen conversion. Energy Convers. Manag. 2021, 246, 114659. [Google Scholar] [CrossRef]
- Gursu, S.; Lordgooei, M.; Sherif, S.A.; Veziroǧlu, T.N. An optimization study of liquid hydrogen boil-off losses. Int. J. Hydrogen Energy 1992, 17, 227–236. [Google Scholar] [CrossRef]
- Ghaffari-Tabrizi, F.; Haemisch, J.; Lindner, D. Reducing Hydrogen Boil-Off Losses during Fuelling by Pre-Cooling Cryogenic Tank. Hydrogen 2022, 3, 255–269. [Google Scholar] [CrossRef]
- Ratnakar, R.R.; Gupta, N.; Zhang, K.; van Doorne, C.; Fesmire, J.; Dindoruk, B.; Balakotaiah, V. Hydrogen supply chain and challenges in largescale LH2 storage and transportation. Int. J. Hydrogen Energy 2021, 46, 24149–24168. [Google Scholar] [CrossRef]
- Morales-Ospino, R.; Celzard, A.; Fierro, V. Strategies to recover and minimize boil-off losses during liquid hydrogen storage. Renew. Sustain. Energy Rev. 2023, 182, 113360. [Google Scholar] [CrossRef]
- Sarangi, S. Cryogenic Storage of Hydrogen. In Progress in Hydrogen Energy; Springer: Dordrecht, The Netherlands, 1987; pp. 123–132. [Google Scholar] [CrossRef]
- Yin, L.; Yang, H.; Ju, Y. Review on the key technologies and future development of insulation structure for liquid hydrogen storage tanks. Int. J. Hydrogen Energy 2024, 57, 1302–1315. [Google Scholar] [CrossRef]
- Zohuri, B. Cryogenics and Liquid Hydrogen Storage. In Hydrogen Energy; Springer International Publishing: Cham, Switzerland, 2019; pp. 121–139. [Google Scholar] [CrossRef]
- Mital, S.K.; Ghekenyesi, J.Z. Review of Current State of the Art and Key Design Issues with Potential Solutions for Liquid Hydrogen Cryogenic Storage Tank Structures for Aircraft Applications. 2006. Available online: https://ntrs.nasa.gov/api/citations/20060056194/downloads/20060056194.pdf (accessed on 26 August 2024).
- Godula-Jopek, A.; Jehle, W.; Wellnitz, J. Hydrogen Storage Technologies; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar] [CrossRef]
- Krainz, G. Development of Automotive Liquid Hydrogen Storage Systems. AIP Conf. Proc. 2004, 710, 35–40. [Google Scholar] [CrossRef]
- Green Car Congress. Kawasaki Completes World’s First Liquefied Hydrogen Receiving Terminal n.d. Available online: https://www.greencarcongress.com/2021/01/20210123-kobe.html%0A (accessed on 19 July 2024).
- Derking, H.; van der Togt, L.; Keezer, M. Liquid Hydrogen Storage: Status and Future Perspectives 2019. Available online: https://www.google.com.hk/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.utwente.nl/en/tnw/ems/research/ats/Events/chmt/m13-hendrie-derking-cryoworld-chmt-2019.pdf&ved=2ahUKEwiS29ylkdGIAxVijVYBHYcHCVEQFnoECBQQAQ&usg=AOvVaw2rBUyqZBDsVC0O4J441A2a (accessed on 26 August 2024).
- Johnson, W.L. Thermal Performance of Cryogenic Multilayer Insulation at Various Layer Spacings; University of Central Florida: Orlando, FL, USA, 2010. [Google Scholar]
- Scopus. Document Search 2024. Available online: https://www.scopus.com/search/form.uri?display=basic&zone=header&origin=#basic (accessed on 1 July 2024).
- Swanger, A. World’s Largest Liquid Hydrogen Tank Nearing Completion 2022. Available online: https://ntrs.nasa.gov/api/citations/20220004276/downloads/Cold Facts_LH2 Sphere Update.pdf (accessed on 31 August 2023).
- Fesmire, J.; Swanger, A.; Jacobson, J.; Notardonato, W. Energy efficient large-scale storage of liquid hydrogen. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1240, 012088. [Google Scholar] [CrossRef]
- Fesmire, J.; Swanger, A. Overview of the New LH2 Sphere at NASA kennerdy Space Center 2021. Available online: https://ntrs.nasa.gov/citations/20210020920 (accessed on 26 August 2024).
- Norwegian Centres of Expertise. Norwegian Future Value Chains for Liquid Hydrogen. 2016. Available online: https://maritimecleantech.no/wp-content/uploads/2016/11/Report-liquid-hydrogen.pdf (accessed on 26 August 2024).
- Kawasaki Heavy Industries Ltd. Liquefied Hydrogen Storage Tank n.d. Available online: https://global.kawasaki.com/en/corp/newsroom/news/detail/?f=20201224_8018 (accessed on 2 September 2023).
- Decker, L. Liquid Hydrogen Distribution Technology 2019. Available online: https://www.google.com.hk/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.sintef.no/globalassets/project/hyper/presentations-day-2/day2_1105_decker_liquid-hydrogen-distribution-technology_linde.pdf&ved=2ahUKEwi8wIGAk9GIAxX-qVYBHaF8KaEQFnoECBIQAQ&usg=AOvVaw0cTTTib4lL_u8vU4VOGqFR (accessed on 26 August 2024).
- Hedayat, A.; Brown, T.M.; Hastings, L.J.; Martin, J. Variable density multilayer insulation for cryogenic storage. In Proceedings of the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Las Vegas, NV, USA, 24 July–28 July 2000. [Google Scholar] [CrossRef]
- Johnson, W.L. Optimization of layer densities for multilayered insulation systems. AIP Conf. Proc. 2010, 1218, 804–811. [Google Scholar] [CrossRef]
- Hastings, L.J.; Hedayat, A.; Brown, T.M. Analytical Modeling and Test Correlation of Variable Density Multilayer Insulation for Cryogenic Storage. 2004. Available online: https://ntrs.nasa.gov/api/citations/20040121015/downloads/20040121015.pdf (accessed on 26 August 2024).
- Wang, P.; Ji, L.; Yuan, J.; An, Z.; Yan, K.; Zhang, J. The influence of inner material with different average thermal conductivity on the performance of whole insulation system for liquid hydrogen on orbit storage. Int. J. Hydrogen Energy 2021, 46, 10913–10923. [Google Scholar] [CrossRef]
- Dye, S.; Kopelove, A.; Mills, G.L. Novel load responsive multilayer insulation with high in-atmosphere and on-orbit thermal performance. Cryogenics 2012, 52, 243–247. [Google Scholar] [CrossRef]
- Dye, S.; Johnson, W.L.; Plachta, D.W.; Mills, G.L.; Buchanan, L.; Kopelove, A. Design, fabrication and test of Load Bearing multilayer insulation to support a broad area cooled shield. Cryogenics 2014, 64, 135–140. [Google Scholar] [CrossRef]
- Huerta, F.; Vesovic, V. CFD modelling of the isobaric evaporation of cryogenic liquids in storage tanks. Int. J. Heat Mass Transf. 2021, 176, 121419. [Google Scholar] [CrossRef]
- Park, W.S.; Yoo, S.W.; Kim, M.H.; Lee, J.M. Strain-rate effects on the mechanical behavior of the AISI 300 series of austenitic stainless steel under cryogenic environments. Mater. Des. 2010, 31, 3630–3640. [Google Scholar] [CrossRef]
- Schutz, J. Properties of composite materials for cryogenic applications. Cryogenics 1998, 38, 3–12. [Google Scholar] [CrossRef]
- Horiuchi, T.; Ooi, T. Cryogenic properties of composite materials. Cryogenics 1995, 35, 677–679. [Google Scholar] [CrossRef]
- Zhu, S.; Zhu, C.; Luo, D.; Zhang, X.; Zhou, K. Development of a Low-Density and High-Strength Titanium Alloy. Metals 2023, 13, 251. [Google Scholar] [CrossRef]
- Marinelli, M.; Santarelli, M. Hydrogen storage alloys for stationary applications. J. Energy Storage 2020, 32, 101864. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, L.; Wang, J.; Xi, X.; Zhu, H.; Zhou, Y.; Wang, J. Thermodynamic analysis and comparison of four insulation schemes for liquid hydrogen storage tank. Energy Convers. Manag. 2019, 186, 526–534. [Google Scholar] [CrossRef]
- Jiang, W.; Sun, P.; Li, P.; Zuo, Z.; Huang, Y. Transient thermal behavior of multi-layer insulation coupled with vapor cooled shield used for liquid hydrogen storage tank. Energy 2021, 231, 120859. [Google Scholar] [CrossRef]
- Kang, D.; Yun, S.; Kim, B. Review of the Liquid Hydrogen Storage Tank and Insulation System for the High-Power Locomotive. Energies 2022, 15, 4357. [Google Scholar] [CrossRef]
- Krenn, A.G. Diagnosis of a poorly performing liquid hydrogen bulk storage sphere. AIP Conf. Proc. 2012, 1434, 376–383. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, J.; Park, S.; Park, H.; Chang, D. Design and analysis of liquid hydrogen fuel tank for heavy duty truck. Int. J. Hydrogen Energy 2022, 47, 14687–14702. [Google Scholar] [CrossRef]
- ISO 13985:2006; Liquid Hydrogen—Land Vehicle Fuel Tanks. ISO: Geneva, Switzerland, 2006.
- Ustolin, F.; Paltrinieri, N.; Berto, F. Loss of integrity of hydrogen technologies: A critical review. Int. J. Hydrogen Energy 2020, 45, 23809–23840. [Google Scholar] [CrossRef]
- Fesmire, J.E. Layered composite thermal insulation system for nonvacuum cryogenic applications. Cryogenics 2016, 74, 154–165. [Google Scholar] [CrossRef]
- Wang, B.; Huang, Y.H.; Li, P.; Sun, P.J.; Chen, Z.C.; Wu, J.Y. Optimization of variable density multilayer insulation for cryogenic application and experimental validation. Cryogenics 2016, 80, 154–163. [Google Scholar] [CrossRef]
- Yanxing, Z.; Maoqiong, G.; Yuan, Z.; Xueqiang, D.; Jun, S. Thermodynamics analysis of hydrogen storage based on compressed gaseous hydrogen, liquid hydrogen and cryo-compressed hydrogen. Int. J. Hydrogen Energy 2019, 44, 16833–16840. [Google Scholar] [CrossRef]
- Brooks, A.N.; Hibbs, B.D.; Thompson, D.R. Cryogenic Liquid Tank. U.S. Patent US20180080606 A1, 22 March 2018. [Google Scholar]
- Brooks, A.N.; Hibbs, B.D.; Thompson, D.R. Cryogenic Liquid Tank. U.S. Patent US 10584828 B2, 10 March 2020. [Google Scholar]
- Immel, R.; Matos Da Silve, J. Liquid Hydrogen Storage Tank with Common-Access Tube as Port for Pipes into the Innervessel. U.S. Patent US007641068B2, 5 January 2010. [Google Scholar]
- Immel, R.; Matos Da Silve, J. Suspended Liquid Hydrogen Storage Tank. U.S. Patent 7757882, 20 July 2010. [Google Scholar]
- Pechtold, R. Liquid Hydrogen Storage Tank with Reduced Tanking Losses. U.S. Patent US007484540B2, 3 February 2009. [Google Scholar]
- Guilhem, J.; Bourgeois, M. Insulated Storage Tank for Liquid or Liquefeed Products. Patent 3896961, 29 July 1975. [Google Scholar]
- Rudolf, B. Method of and Apparatus for the Transportation and Storage of Liquefiable Gases. U.S. Patent 3254498, 7 June 1966. [Google Scholar]
- Richard, N.H.H. Insulation of Containers for the Storage of Liquids Which Boil at Atmospheric or Slightly Superatmospheric Pressure. U.S. Patent 3110156, 12 November 1963. [Google Scholar]
- Rae, R.S. Liquid Storage Tank. Patent 2922287, 26 November 1960. [Google Scholar]
- Jingu, J. Liquefied Hydrogen Fuel Tank for Drones and Automobiles. Patent KR102105883B1, 29 April 2020. [Google Scholar]
- Fesmire, J.E.; Sass, J.P.; Nagy, Z.; Sojourner, S.J.; Morris, D.L.; Augustynowicz, S.D. Cost-Efficient Storage of Cryogens. 2007. Available online: https://ntrs.nasa.gov/api/citations/20120000651/downloads/20120000651.pdf (accessed on 26 August 2024).
- NREL. Costs of Storing and Transporting Hydrogen. 1998. Available online: https://www.nrel.gov/docs/fy99osti/25106.pdf (accessed on 26 August 2024).
Properties | CGH2 | LH2 |
---|---|---|
Temperature | 25 | −253 |
Pressure (bar) | 690 | 1 |
o-H2/p-H2 | 0.75/0.25 | 0.01/0.99 |
Mass Density (kg/m3) | 38.88 | 70.94 |
Molar density (kgmole/m3) | 19.29 | 35.19 |
Mass enthalpy (kJ/kg) | 4639 | −250.2 |
Mass entropy (kJ/kg°C) | 43.33 | 8.25 |
Heat of vaporization (kJ/kg) | - | 445.8 |
Specific Volume (m3/kgmole) | 0.052 | 0.028 |
Insulation Type | k-Value (300–77 K) W/mK | Pros | Cons |
---|---|---|---|
Insulation at atm pressure | 0.020–0.050 | Low weight Inexpensive | High heat load |
Perlite at 10−2 mbar | 0.001 | Good performance Standard technology | Needs strong vacuum Heavy structure |
Multilayer insulation at 10−4 mbar | 6.5 × 10−6–1.0 × 10−4 | Excellent performance | Needs strong vacuum Heavy structure Expensive |
Insulation Material | Density (kg/m3) | k-Value (W/mK) |
---|---|---|
Stacked insulation material (77 K–300 K) | ||
Polyurethane | 11 | 0.033 |
Polystyrene | 39, 46 | 0.026–0.033 |
Rubber | 80 | 0.036 |
Silicon | 160 | 0.055 |
Glass | 140 | 0.035 |
Stacked insulation material (90 K–300 K) | ||
Perlite | 50, 210 | 0.026–0.044 |
Aerogel | 80 | 0.019 |
Vermiculite | 120 | 0.052 |
Glass fiber | 110 | 0.025 |
Mineral wool | 160 | 0.035 |
Vacuum powder insulation material (77 K–300 K) | ||
Perlite | 64, 180 | 0.00095–0.00019 |
Aerogel | 80 | 0.0016 |
Glass fiber | 50 | 0.0017 |
Size (kg) | Cost/kg ($/kg) * |
---|---|
8.9–890 | 21–36 (43–74) |
0.089–8.9 | 490–700 (1011–1444) |
270 | 450 (929) |
300,000 | 18 (37) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naquash, A.; Agarwal, N.; Lee, M. A Review on Liquid Hydrogen Storage: Current Status, Challenges and Future Directions. Sustainability 2024, 16, 8270. https://doi.org/10.3390/su16188270
Naquash A, Agarwal N, Lee M. A Review on Liquid Hydrogen Storage: Current Status, Challenges and Future Directions. Sustainability. 2024; 16(18):8270. https://doi.org/10.3390/su16188270
Chicago/Turabian StyleNaquash, Ahmad, Neha Agarwal, and Moonyong Lee. 2024. "A Review on Liquid Hydrogen Storage: Current Status, Challenges and Future Directions" Sustainability 16, no. 18: 8270. https://doi.org/10.3390/su16188270