Coastal Aquaculture Mapping from Very High Spatial Resolution Imagery by Combining Object-Based Neighbor Features
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data and Preprocessing
3.2. Land and Sea Areas Separation
3.3. Two-Level Hierarchical Segmentation
3.4. Creating Semantically Meaningful Objects for CCA and RCA
3.5. Neighbor Features Calculation and Final Classification
3.5.1. Features Based on Neighborhood Relationship
3.5.2. CCA and RCA Mapping
3.6. Comparison Methods
3.6.1. Single-Scale Based Conventional Information Classification Method
3.6.2. Multi-Scale Based Conventional Information and Single-Scale Based Neighbor Information Classification Methods
3.7. Accuracy Assessment and Comparison
4. Results
4.1. Segmentation and Classification Results of Land and Sea Area Separation
4.2. Final Classification Results and Accuracy Assessment
4.3. Accuracy Comparison
5. Discussion
5.1. Extraction of CCA and RCA and Multi-Scale Based Neighbor Features
5.2. Related Methods and Advantages
5.3. Scale Effects and Limitations
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Kapetsky, J.M.; Aguilar-Manjarrez, J.; Jenness, J. A global Assessment of Offshore Mariculture Potential from a Spatial Perspective; FAO: Rome, Italy, 2013; ISBN 9789251073896. [Google Scholar]
- Forster, J.; Radulovich, R. Seaweed and food security. In Seaweed Sustainability: Food and Non-Food Applications; Tiwari, B.K., Troy, D.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 289–313. ISBN 9780124199583. [Google Scholar]
- Islam, M.S. Nitrogen and phosphorus budget in coastal and marine cage aquaculture and impacts of effluent loading on ecosystem: Review and analysis towards model development. Mar. Pollut. Bull. 2005, 50, 48–61. [Google Scholar] [CrossRef]
- Boyd, C.E.; Tucker, C.; McNevin, A.; Bostick, K.; Clay, J. Indicators of resource use efficiency and environmental performance in fish and crustacean aquaculture. Rev. Fish. Sci. 2007, 15, 327–360. [Google Scholar] [CrossRef]
- Beveridge, M.C.M. Cage Aquaculture, 3rd ed.; Blackwell Publishing: Ames, IA, USA, 2004; ISBN 1405108428. [Google Scholar]
- Zanuttigh, B.; Angelelli, E.; Bellotti, G.; Romano, A.; Krontira, Y.; Troianos, D.; Suffredini, R.; Franceschi, G.; Cantù, M.; Airoldi, L.; et al. Boosting blue growth in a mild sea: Analysis of the synergies produced by a multi-purpose offshore installation in the Northern Adriatic, Italy. Sustainability 2015, 7, 6804–6853. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture; FAO: Rome, Italy, 2004; ISBN 9251051771. [Google Scholar]
- FAO. The State of World Fisheries and Aquaculture; FAO: Rome, Italy, 2018; ISBN 9789251305621. [Google Scholar]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation, 5th ed.; John Wiley & Sons: Hobokan, NJ, USA, 2004; ISBN 0471152277. [Google Scholar]
- Li, M.S.; Mao, L.J.; Shen, W.J.; Liu, S.Q.; Wei, A.S. Change and fragmentation trends of Zhanjiang mangrove forests in southern China using multi-temporal Landsat imagery (1977–2010). Estuar. Coast. Shelf Sci. 2013, 130, 111–120. [Google Scholar] [CrossRef]
- Volpe, J.P.; Gee, J.L.M.; Ethier, V.A.; Beck, M.; Wilson, A.J.; Stoner, J.M.S. Global aquaculture performance index (GAPI): The first global environmental assessment of marine fish farming. Sustainability 2013, 5, 3976–3991. [Google Scholar] [CrossRef]
- Rajitha, K.; Mukherjee, C.K.; Vinu Chandran, R. Applications of remote sensing and GIS for sustainable management of shrimp culture in India. Aquac. Eng. 2007, 36, 1–17. [Google Scholar] [CrossRef]
- Carswell, B.; Cheesman, S.; Anderson, J. The use of spatial analysis for environmental assessment of shellfish aquaculture in Baynes Sound, Vancouver Island, British Columbia, Canada. Aquaculture 2006, 253, 408–414. [Google Scholar] [CrossRef]
- Alexandridis, T.K.; Topaloglou, C.A.; Lazaridou, E.; Zalidis, G.C. The performance of satellite images in mapping aquacultures. Ocean Coast. Manag. 2008, 51, 638–644. [Google Scholar] [CrossRef]
- Fan, J.; Chu, J.; Geng, J.; Zhang, F. Floating raft aquaculture information automatic extraction based on high resolution SAR images. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 3898–3901. [Google Scholar]
- Lu, Y.; Li, Q.; Du, X.; Wang, H.; Liu, J. A Method of Coastal Aquaculture Area Automatic Extraction with High Spatial Resolution Images. Remote Sens. Technol. Appl. 2015, 30, 486–494. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Walter, V. Object-based classification of remote sensing data for change detection. ISPRS J. Photogramm. Remote Sens. 2004, 58, 225–238. [Google Scholar] [CrossRef]
- Laliberte, A.S.; Rango, A.; Havstad, K.M.; Paris, J.F.; Beck, R.F.; McNeely, R.; Gonzalez, A.L. Object-oriented image analysis for mapping shrub encroachment from 1937 to 2003 in southern New Mexico. Remote Sens. Environ. 2004, 93, 198–210. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, J.; Wang, A.; Chen, J. Object-and pixel-based classifications of macroalgae farming area with high spatial resolution imagery. Geocarto Int. 2017, 1–16. [Google Scholar] [CrossRef]
- Kim, M.; Warner, T.A.; Madden, M.; Atkinson, D.S. Multi-scale GEOBIA with very high spatial resolution digital aerial imagery: Scale, texture and image objects. Int. J. Remote Sens. 2011, 32, 2825–2850. [Google Scholar] [CrossRef]
- Zhou, W.; Troy, A. Development of an object-based framework for classifying and inventorying human-dominated forest ecosystems. Int. J. Remote Sens. 2009, 30, 6343–6360. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, Q.; Kelly, M. A framework of region-based spatial relations for non-overlapping features and its application in object based image analysis. ISPRS J. Photogramm. Remote Sens. 2008, 63, 461–475. [Google Scholar] [CrossRef]
- Zheng, X.; Wu, B.; Weston, M.V.; Zhang, J.; Gan, M.; Zhu, J.; Deng, J.; Wang, K.; Teng, L. Rural settlement subdivision by using landscape metrics as spatial contextual information. Remote Sens. 2017, 9, 486. [Google Scholar] [CrossRef]
- Wang, M.; Cui, Q.; Wang, J.; Ming, D.; Lv, G. Raft cultivation area extraction from high resolution remote sensing imagery by fusing multi-scale region-line primitive association features. ISPRS J. Photogramm. Remote Sens. 2017, 123, 104–113. [Google Scholar] [CrossRef]
- Wolf, A. Using WorldView 2 Vis-NIR MSI Imagery to Support Land Mapping and Feature Extraction Using Normalized Difference Index Ratios. In Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery; SPIE: Baltimore, MD, USA, 2012; Volume 8390, p. 83900N. [Google Scholar]
- Lin, C.; Wu, C.C.; Tsogt, K.; Ouyang, Y.C.; Chang, C.I. Effects of atmospheric correction and pansharpening on LULC classification accuracy using WorldView-2 imagery. Inf. Process. Agric. 2015, 2, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Baatz, M.; Schäpe, A. Multiresolution Segmentation: An optimization approach for high quality multi-scale image segmentation. In Angewandte Geographische Informationsverarbeitung XII; Strobl, J., Blaschke, T., Griesebner, G., Eds.; Wichmann: Heidelberg, Germany, 2000; pp. 12–23. [Google Scholar]
- Nussbaum, S.; Niemeyer, I.; Canty, M.J. Seath—A New Tool for Automated Feature Extraction in the Context of Object-Based Image Analysis. In Proceedings of the 1st International Conference on Object-Based Image Analysis, Salzburg, Austria, 4–5 July 2006; pp. 1–6. [Google Scholar]
- Drǎguţ, L.; Tiede, D.; Levick, S.R. ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871. [Google Scholar] [CrossRef]
- Nisbet, R.; Elder, J.; Miner, G. Handbook of Statistical Analysis and Data Mining Applications; Academic Press: Amsterdam, The Netherlands, 2009; ISBN 9780123747655. [Google Scholar]
- eCognition Developer. Trimble eCognition Developer 9.0 User Guide; Trimble Germany GmbH: Munich, Germany, 2014. [Google Scholar]
- Powers, D.M.W. Evaluation: From precision, recall and f-measure to roc, informedness, markedness and correlation. J. Mach. Learn. Technol. 2011, 2, 37–63. [Google Scholar]
- Volpi, M.; Tuia, D.; Bovolo, F.; Kanevski, M.; Bruzzone, L. Supervised change detection in VHR images using contextual information and support vector machines. Int. J. Appl. Earth Obs. Geoinf. 2013, 20, 77–85. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, L. An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery. IEEE Trans. Geosci. Remote Sens. 2013, 51, 257–272. [Google Scholar] [CrossRef]
- Pacifici, F.; Chini, M.; Emery, W.J. A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification. Remote Sens. Environ. 2009, 113, 1276–1292. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, J.; Li, T.; Lu, X. Change detection for high-resolution remote sensing imagery based on multi-scale segmentation and fusion. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 1919–1922. [Google Scholar]
- Tso, B.; Olsen, R.C. A contextual classification scheme based on MRF model with improved parameter estimation and multiscale fuzzy line process. Remote Sens. Environ. 2005, 97, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Kayitakire, F.; Hamel, C.; Defourny, P. Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery. Remote Sens. Environ. 2006, 102, 390–401. [Google Scholar] [CrossRef]
- Ma, L.; Wu, D.; Deng, J.; Wang, K.; Li, J.; Gu, Q.; Dai, Y. Discrimination of residential and industrial buildings using LiDAR data and an effective spatial-neighbor algorithm in a typical urban industrial park. Eur. J. Remote Sens. 2015, 48, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Stow, D.A.; Gong, P. Examining the effect of spatial resolution and texture window size on classification accuracy: An urban environment case. Int. J. Remote Sens. 2004, 25, 2177–2192. [Google Scholar] [CrossRef]
- Puissant, A.; Hirsch, J.; Weber, C. The utility of texture analysis to improve per-pixel classification for high to very high spatial resolution imagery. Int. J. Remote Sens. 2005, 26, 733–745. [Google Scholar] [CrossRef]
- Cheng, G.; Han, J.; Lu, X. Remote Sensing Image Scene Classification: Benchmark and State of the Art. Proc. IEEE 2017, 105, 1865–1883. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Newsam, S. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS ’10, San Jose, CA, USA, 2–5 November 2010; pp. 270–279. [Google Scholar]
- Sheng, G.; Yang, W.; Xu, T.; Sun, H. High-resolution satellite scene classification using a sparse coding based multiple feature combination. Int. J. Remote Sens. 2012, 33, 2395–2412. [Google Scholar] [CrossRef]
- Sharma, A.; Liu, X.; Yang, X.; Shi, D. A patch-based convolutional neural network for remote sensing image classification. Neural Netw. 2017, 95, 19–28. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Liu, Q.; Li, L.; Wang, P. A CNN based functional zone classification method for aerial images. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 2153–7003. [Google Scholar]
- Sugimoto, M.; Ouchi, K.; Nakamura, Y. Comprehensive contrast comparison of laver cultivation area extraction using parameters derived from polarimetric synthetic aperture radar data. J. Appl. Remote Sens. 2013, 7, 073566. [Google Scholar] [CrossRef]
- Huo, Y.; Han, H.; Shi, H.; Wu, H.; Zhang, J.; Yu, K.; Xu, R.; Liu, C.; Zhang, Z.; Liu, K.; et al. Changes to the biomass and species composition of Ulva sp. on Porphyra aquaculture rafts, along the coastal radial sandbank of the Southern Yellow Sea. Mar. Pollut. Bull. 2015, 93, 210–216. [Google Scholar] [CrossRef]
- He, C.; Zhuo, T.; Zhao, S.; Yin, S.; Chen, D. Particle filter sample texton feature for SAR image classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1141–1145. [Google Scholar] [CrossRef]
- Dumitru, C.O.; Datcu, M. Information Content of Very High Resolution SAR Images: Study of Feature Extraction and Imaging Parameters. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4591–4610. [Google Scholar] [CrossRef] [Green Version]
- Geng, J.; Fan, J.; Wang, H. Weighted Fusion-Based Representation Classifiers for Marine Floating Raft Detection of SAR Images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 444–448. [Google Scholar] [CrossRef]
Feature Type | Features | Descriptions |
---|---|---|
Normalized difference index | Normalized Difference Vegetation Index (NDVI) | (band8 − band5)/(band8 + band5) |
Normalized Difference Water Index (NDWI) | (band1 − band8)/(band1 + band8) | |
Spectral features | Mean Layer i (i = 1,2,3,4,5,6,7,8) | Means of band i (i = 1,2,3,4,5,6,7,8) |
Standard deviation Layer i (i = 1,2,3,4,5,6,7,8) | Standard deviations of band i (i = 1,2,3,4,5,6,7,8) | |
Brightness | Average of means of bands 1–8 | |
Maximum difference | (Maximum difference of bands 1–8)/brightness | |
Geometry features | Area | Area of an image object |
Asymmetry | Relative length of an image object, compared to a regular polygon | |
Length | Length of an image object | |
Width | Wight of an image object | |
Length/Width | Length-to-width ratio of an image object | |
Border index | The jagged degree of an image object | |
Border length | Sum of edges of the image object | |
Compactness | The compact degree of an image object | |
Density | The distribution in space of the pixels of an image object | |
Elliptic Fit | The degree of an image object fits into an ellipse of similar size and proportions | |
Rectangular Fit | The degree of an image object fits into a rectangle of similar size and proportions | |
Roundness | The similarity an image object with an ellipse | |
Shape index | Smoothness of an image object border | |
Volume | Number of voxels of an image object |
Features | J-M Distance | Omen | Threshold |
---|---|---|---|
Mean Layer 6 | 1.88 | great | 248.93 |
Mean Layer 7 | 1.74 | great | 147.47 |
NDWI | 1.73 | great | −0.39 |
Brightness | 1.71 | great | 281.88 |
Mean Layer 8 | 1.69 | great | 207.32 |
Features | J-M Distance | Omen | Threshold |
---|---|---|---|
NDWI | 1.52 | small | −0.53 |
Mean Layer 6 | 1.50 | great | 218.31 |
Standard deviation Layer 5 | 1.48 | great | 9.66 |
Standard deviation Layer 8 | 1.47 | great | 37.38 |
Standard deviation Layer 7 | 1.46 | great | 23.77 |
Predicted Class | Ground Truth | |||||
---|---|---|---|---|---|---|
CCA | Watercraft | RCA | Sea Water | Sum | UA: | |
CCA | 89 | 3 | 1 | 0 | 93 | 96% |
Watercraft | 5 | 35 | 1 | 0 | 41 | 85% |
RCA | 0 | 0 | 433 | 4 | 437 | 99% |
Sea water | 8 | 0 | 38 | 932 | 978 | 95% |
Sum | 102 | 38 | 473 | 936 | ||
PA: | 87% | 92% | 92% | 99% | ||
Overall accuracy: | 96% | |||||
Kappa coefficient: | 0.93 |
Methods | Our-MNIC | SCIC | MCIC | SNIC | |||||
---|---|---|---|---|---|---|---|---|---|
CCA | RCA | CCA | RCA | CCA | RCA | CCA | RCA | ||
Evaluation Criteria | Precision | 96.53% | 97.93% | 29.28% | 58.45% | 94.44% | 33.32% | 29.29% | 95.84% |
Recall | 92.67% | 92.48% | 94.67% | 83.95% | 90.67% | 90.21% | 93.33% | 90.21% | |
F-measure | 94.56% | 95.13% | 44.72% | 68.92% | 92.52% | 48.67% | 44.59% | 92.94% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Deng, J.; Ye, Z.; Gan, M.; Wang, K.; Wu, J.; Yang, W.; Xiao, G. Coastal Aquaculture Mapping from Very High Spatial Resolution Imagery by Combining Object-Based Neighbor Features. Sustainability 2019, 11, 637. https://doi.org/10.3390/su11030637
Fu Y, Deng J, Ye Z, Gan M, Wang K, Wu J, Yang W, Xiao G. Coastal Aquaculture Mapping from Very High Spatial Resolution Imagery by Combining Object-Based Neighbor Features. Sustainability. 2019; 11(3):637. https://doi.org/10.3390/su11030637
Chicago/Turabian StyleFu, Yongyong, Jinsong Deng, Ziran Ye, Muye Gan, Ke Wang, Jing Wu, Wu Yang, and Guoqiang Xiao. 2019. "Coastal Aquaculture Mapping from Very High Spatial Resolution Imagery by Combining Object-Based Neighbor Features" Sustainability 11, no. 3: 637. https://doi.org/10.3390/su11030637
APA StyleFu, Y., Deng, J., Ye, Z., Gan, M., Wang, K., Wu, J., Yang, W., & Xiao, G. (2019). Coastal Aquaculture Mapping from Very High Spatial Resolution Imagery by Combining Object-Based Neighbor Features. Sustainability, 11(3), 637. https://doi.org/10.3390/su11030637