Condensable Particulate Matter Removal and Its Mechanism by Phase Change Technology During Wet Desulfurization Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental System
2.2. Measurement Method
3. Results and Discussion
3.1. CPM Emission Characteristics
3.2. Influence of Operating Parameters on CPM Emissions
3.2.1. Effect of the Liquid-to-Gas Ratio of Hot Alkali Droplet Spray
3.2.2. Effect of the Temperature of Hot Alkali Droplet Spray
3.3. Effect of Cold Water Spray on CPM Emission Characteristics
3.3.1. Effect of the Liquid-to-Gas Ratio of Cold Water Spray
3.3.2. Effect of the Temperature of Cold Water Spray
3.4. Effect of SO2 on CPM Emission Characteristics
3.5. Key Mechanism of Condensable Particulate Matter Removal
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Li, X.; Wang, W.; Wang, X.; Lu, S.; Sun, J.; Mao, Y. Investigation on removal effects and condensation characteristics of condensable particulate matter: Field test and experimental study. Sci. Total Environ. 2021, 783, 146985. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Qi, Z.; Li, M.; Wu, D.; Zhou, C.; Lu, S.; Yan, J.; Li, X. Physical and Chemical Characteristics of Condensable Particulate Matter from an Ultralow-Emission Coal-Fired Power Plant. Energy Fuels 2017, 31, 1778–1785. [Google Scholar] [CrossRef]
- Wang, G.; Deng, J.; Ma, Z.; Hao, J.; Jiang, J. Characteristics of filterable and condensable particulate matter emitted from two waste incineration power plants in China. Sci. Total Environ. 2018, 639, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xu, Z.; Liu, S.; Tang, M.; Lu, S. The effect of air pollution control devices in coal-fired power plants on the removal of condensable and filterable particulate matter. Environ. Sci. Pollut. Res. Int. 2023, 30, 70277–70287. [Google Scholar] [CrossRef]
- Wu, B.; Bai, X.; Liu, W.; Lin, S.; Liu, S.; Luo, L.; Guo, Z.; Zhao, S.; Lv, Y.; Zhu, C.; et al. Non-Negligible Stack Emissions of Noncriteria Air Pollutants from Coal-Fired Power Plants in China: Condensable Particulate Matter and Sulfur Trioxide. Environ. Sci. Technol. 2020, 54, 6540–6550. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, Y.; Liu, S.; Tang, M.; Lu, S. Distribution and emission characteristics of filterable and condensable particulate matter in the flue gas emitted from an ultra-low emission coal-fired power plant. J. Environ. Chem. Eng. 2022, 10, 107667. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, H.; Yang, L. Investigation on Condensation Characteristics and Removal Performance of SO3 in Low-Low-Temperature Electrostatic Precipitator. Atmosphere 2024, 15, 168. [Google Scholar] [CrossRef]
- Mao, S.-H.; Zhu, Y.-F.; Lin, G.-H. Comprehensive Fuzzy Evaluationon Fule Gas High Efficiency Dust Removal Technology. Power Stn. Aux. Equip. 2018, 1, 13–17+24. [Google Scholar]
- Saiyasitpanich, P.; Keener, T.; Lu, M.; Khang, S.; Evans, D. Collection of Ultrafine Diesel Particulate Matter (DPM) in Cylindrical Single-Stage Wet Electrostatic Precipitators. Environ. Sci. Technol. 2006, 40, 7890–7895. [Google Scholar] [CrossRef]
- Zheng, C.; Hong, Y.; Liu, S.; Yang, Z.; Chang, Q.; Zhang, Y.; Gao, X. Removal and Emission Characteristics of Condensable Particulate Matter in an Ultralow Emission Power Plant. Energy Fuels 2018, 32, 10586–10594. [Google Scholar] [CrossRef]
- Peng, Y.; Shi, N.; Wang, J.; Wang, T.; Pan, W.-P. Mercury speciation and size-specific distribution in filterable and condensable particulate matter from coal combustion. Sci. Total Environ. 2021, 787, 147597. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Dong, Y.; Lai, Y.; Zhang, H.; Zhang, X. Synergistic removal of particles, SO2, and NO2 in desulfurized flue gas during condensation. Environ. Sci. Pollut. Res. 2021, 28, 27273–27282. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Liu, H.; Feng, P.; Li, Z.; Tan, H. Effects of Wet Flue Gas Desulfurization and Wet Electrostatic Precipitator on Particulate Matter and Sulfur Oxide Emission in Coal-Fired Power Plants. Energy Fuels 2020, 34, 16423–16432. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, C.; Su, Q.; Wang, Y.; Lu, Y.; Zhang, Y.; Zhu, Y. SOx removal and emission characteristics of WFGD system applied in ultra-low emission coal-fired power plants. Case Stud. Therm. Eng. 2021, 28, 101562. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Zhang, Z.; Nie, M.; Wang, L.; Zhang, H. Adsorption of condensable particulate matter from coal-fired flue gas by activated carbon. Sci. Total Environ. 2021, 778, 146245. [Google Scholar] [CrossRef]
- Zheng, C.; Hong, Y.; Xu, Z.; Li, C.; Wang, L.; Yang, Z.; Zhang, Y.; Gao, X. Experimental Study on Removal Characteristics of SO3 by Wet Flue Gas Desulfurization Absorber. Energy Fuels 2018, 32, 6031–6038. [Google Scholar] [CrossRef]
- Chen, T.; Deng, L.; Li, Y.; Li, J.; Zhang, Z. Improvement of the reduction of condensable particulate matter in flue gas scrubbing process. Environ. Res. 2023, 237, 116945. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Li, J.; Zhang, H.; Zhang, Z.; Ran, W. The state of the art of condensable particulate matter. Fuel 2022, 325, 124807. [Google Scholar] [CrossRef]
- Pan, D.; Wu, H.; Yang, L. Investigation of the Relationship between Droplet and Fine Particle Emissions during the Limestone–Gypsum Wet Flue Gas Desulfurization Process. Energy Fuels 2017, 31, 6472–6477. [Google Scholar] [CrossRef]
- Wang, K.; Yang, L.; Li, J.; Sheng, Z.; He, Q.; Wu, K. Characteristics of condensable particulate matter before and after wet flue gas desulfurization and wet electrostatic precipitator from ultra-low emission coal-fired power plants in China. Fuel 2020, 278, 118206. [Google Scholar] [CrossRef]
- Wu, H.; Pan, D.; Huang, R.; Hong, G.; Yang, B.; Peng, Z.; Yang, L. Abatement of Fine Particle Emission by Heterogeneous Vapor Condensation During Wet Limestone-Gypsum Flue Gas Desulfurization. Energy Fuels 2016, 30, 6103–6109. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L.; Wu, H.; Yang, H. Promoting fine particle removal in double-tower cascade wet flue gas desulfurization system by flue gas temperature reduction. Powder Technol. 2020, 373, 581–589. [Google Scholar] [CrossRef]
- Cui, L.; Lu, J.; Song, X.; Tang, L.; Li, Y.; Dong, Y. Energy conservation and efficiency improvement by coupling wet flue gas desulfurization with condensation desulfurization. Fuel 2021, 285, 119209. [Google Scholar] [CrossRef]
- Zhang, R.; Si, X.; Zhao, L.; Yang, L.; Wu, H. Investigation of the emission control of sulfur trioxide aerosols based on heterogeneous condensation and the deflectors tray of the desulfurization tower. RSC Adv. 2020, 10, 38515–38523. [Google Scholar] [CrossRef]
- England, G.C.; Watson, J.G.; Chow, J.C.; Zielinska, B.; Chang, M.C.O.; Loos, K.R.; Hidy, G.M. Dilution-Based Emissions Sampling from Stationary Sources: Part 2—Gas-Fired Combustors Compared with Other Fuel-Fired Systems. J. Air Waste Manag. Assoc. 2012, 57, 65–78. [Google Scholar] [CrossRef]
- Feng, Y.; Li, Y.; Cui, L. Critical review of condensable particulate matter. Fuel 2018, 224, 801–813. [Google Scholar] [CrossRef]
- Huang, Y.-M.; Huang, S.-H.; Lin, C.-W.; Yang, H.-H.; Chen, C.-C. Evaluation of Bias in the Measurement of Condensable Particulate Matter with Method 202. Aerosol Air Qual. Res. 2021, 21, 200149. [Google Scholar] [CrossRef]
- Fan, B.-g.; Jia, L.; Han, F.; Huo, R.-P.; Yao, Y.-X.; Qiao, X.-L.; Zhao, C.-W.; Jin, Y. Study on magnesium slag desulfurizer modified by additives in quenching hydration. J. Mater. Cycles Waste Manag. 2019, 21, 1211–1223. [Google Scholar] [CrossRef]
- Mohammed, M.M.; Alalwan, H.A.; Alminshid, A.; Hussein, S.A.M.; Mohammed, M.F. Desulfurization of heavy naphtha by oxidation-adsorption process using iron-promoted activated carbon and Cu+2-promoted zeolite 13X. Catal. Commun. 2022, 169, 106473. [Google Scholar] [CrossRef]
- Li, X.; Dong, M.; Li, S.; Feng, Z.; Zhang, Z.; Li, W.; Ren, Y.; Lu, J. A numerical study of the ammonia desulfurization in the spray scattering tower. Chem. Eng. Process. 2020, 155, 108069. [Google Scholar] [CrossRef]
- Peng, Z.; Liu, H.; Zhang, C.; Zhai, Y.; Hu, W.; Tan, Y.; Li, X.; Zhou, Z.; Gong, X. Potential Strategy to Control the Organic Components of Condensable Particulate Matter: A Critical Review. Environ. Sci. Technol. 2024, 58, 7691–7709. [Google Scholar] [CrossRef]
- Lee, J.-R.; Hasolli, N.; Jeon, S.-M.; Lee, K.-S.; Gang, J.-H.; Kim, K.-D.; Lee, K.-Y.; Park, Y.-O. Filtration Performance Characteristics of Sticky Aerosol Using Calcium Hydroxide. Atmosphere 2019, 10, 100. [Google Scholar] [CrossRef]
- Li, X.; Liu, Q.; Wang, K.; Wang, F.; Cui, G.; Li, Y.; Na, J. Multimodel Anomaly Identification and Control in Wet Limestone-Gypsum Flue Gas Desulphurization System. Complexity 2020, 2020, 1–17. [Google Scholar] [CrossRef]
- Bian, J.; Guo, D.; Li, Y.; Cai, W.; Hua, Y.; Cao, X. Homogeneous nucleation and condensation mechanism of methane gas: A molecular simulation perspective. Energy 2022, 249, 123610. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, Z.; Hu, C.; Shen, H.; Hu, S.; Zhu, D.; Liu, M.; Liu, J.; Fang, P. Effect of calcium hydroxide on the characteristics of volatile organic compounds emission during sewage sludge incineration. Environ. Prog. Sustain. Energy 2022, 42, e14016. [Google Scholar] [CrossRef]
- Zhou, Z.; Lu, J.; Ma, X. SO3/sulfuric acid mist removal in simulated flue gas: Multi-factor study based on two-film theory mass transfer process. Fuel 2024, 357, 129698. [Google Scholar] [CrossRef]
- Yi, J.; Lu, Y. Effects of vapour pressure on the motion of cavitation bubble. Phys. Chem. Liq. 2016, 55, 1–10. [Google Scholar] [CrossRef]
- Zhou, S.-X.; Liu, C.-Q.; Dai, L.; Zhang, Y.-H.; Zhu, Z.-W.; Mao, L.; Ding, Y.; Han, Z.; Dong, J.-L.; She, A.-M.; et al. Effect of different soluble salt ions on deformation of desulfurization gypsum in high humidity environment: A statistically designed experimental analysis method. Mater. Res. Express 2023, 10, 045603. [Google Scholar] [CrossRef]
- Wang, L.; Wu, H.; Wang, Q.; Zhou, C.; Zhang, Z.; Yang, H.; Zhou, Y. Emission reduction of condensable particulate matter in ammonia-based desulfurized flue gas by heterogeneous vapor condensation. Chem. Eng. Process. Process Intensif. 2021, 167, 108519. [Google Scholar] [CrossRef]
- Zheng, C.; Zheng, H.; Yang, Z.; Liu, S.; Li, X.; Zhang, Y.; Weng, W.; Gao, X. Experimental study on the evaporation and chlorine migration of desulfurization wastewater in flue gas. Environ. Sci. Pollut. Res. Int. 2019, 26, 4791–4800. [Google Scholar] [CrossRef]
- Li, Z.; Wang, X.; Han, Q.; Wang, S. Single-layer spray atomization performance test of wet desulfurization spray tower. Electr. Power Environ. Prot. 2009, 25, 11–14. [Google Scholar]
- Wang, Y.; Hu, L.; Liu, X.; Lu, Y. Integrated absorption/catalyst for flue gas combined desulfurization and denitrification. Electr. Power Environ. Prot. 2009, 25, 18–21. [Google Scholar]
- Wei, L.; Wang, C.; Wang, J. Application of AG-2 coal-fired sulfur-fixing agent desulfurization technology on 220t/h coal-fired boilers. Electr. Power Environ. Prot. 2009, 25, 23–26. [Google Scholar]
- Zhou, Z. Factors affecting the economical operation of desulfurization systems and improvement measures. Electr. Power Environ. Prot. 2009, 25, 35–37. [Google Scholar]
- Pan, S.; Cheng, N. Discussion on the calcium-sulfur ratio and limestone consumption test methods in the performance test of wet flue gas desulfurization equipment. Electr. Power Environ. Prot. 2009, 25, 33–34. [Google Scholar]
Project Title | Typical Operating Conditions |
---|---|
liquid-to-gas ratio | 20 L/m3 |
Flue gas flow rate | 18 Nm3/h |
Inlet flue gas temperature | 120 °C |
Desulfurization slurry concentration | 15% |
SO2 concentration | 1500 mg/Nm3 |
Desulfurization slurry pH value | 5.5 |
Desulfurization slurry temperature | 45 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, H.; Xu, Y.; Ren, Q.; Wu, H.; Shen, L.; Sun, M.; Yang, H. Condensable Particulate Matter Removal and Its Mechanism by Phase Change Technology During Wet Desulfurization Process. Separations 2024, 11, 330. https://doi.org/10.3390/separations11110330
Tong H, Xu Y, Ren Q, Wu H, Shen L, Sun M, Yang H. Condensable Particulate Matter Removal and Its Mechanism by Phase Change Technology During Wet Desulfurization Process. Separations. 2024; 11(11):330. https://doi.org/10.3390/separations11110330
Chicago/Turabian StyleTong, Hui, Yun Xu, Qiangqiang Ren, Hao Wu, Linzhi Shen, Menglong Sun, and Hongmin Yang. 2024. "Condensable Particulate Matter Removal and Its Mechanism by Phase Change Technology During Wet Desulfurization Process" Separations 11, no. 11: 330. https://doi.org/10.3390/separations11110330
APA StyleTong, H., Xu, Y., Ren, Q., Wu, H., Shen, L., Sun, M., & Yang, H. (2024). Condensable Particulate Matter Removal and Its Mechanism by Phase Change Technology During Wet Desulfurization Process. Separations, 11(11), 330. https://doi.org/10.3390/separations11110330