LSTM–Transformer-Based Robust Hybrid Deep Learning Model for Financial Time Series Forecasting
Abstract
:1. Introduction
2. Literature Review
2.1. Statistical Linear Models for Financial Time Series
2.2. Nonlinear Models for Financial Time Series
2.3. Hybrid Deep Learning Models for Financial Time Series
3. Methodology
3.1. LSTM
3.2. Transformer
3.3. Multilayer Perceptron (MLP)
3.4. Proposed LSTM-mTrans-MLP Model
4. Results
4.1. Dataset
4.2. Preprocessing
4.3. Model Comparison and Results
5. Conclusions
- (a)
- The model’s effectiveness across diverse volatility levels demonstrates its generalizability and resilience, making it a versatile tool for financial forecasting. Future research may explore the integration of diffusion models or the use of external textual data, such as financial news, to further refine the model’s forecasting abilities. The diffusion model shows prospects in time series prediction and forecasting applications. Diffusion models can be explored as an extension of or ensemble with the hybrid model architecture to enhance both the efficacy and efficiency of its forecasting.
- (b)
- The impact of textual information, along with historical stock data, can be investigated for the further enhancement of the model’s performance. Textual information such as financial news, company earnings reports, social media statuses, and stock bar comments may significantly impact stock price movement.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LSTM | Long Short-Term Memory |
MLP | Multilayer Perceptron |
CNN | Convolutional Neural Network |
RNN | Recurrent Neural Network |
DNN | Deep Neural Network |
SSN | Sparkling Neural Network |
RBFNN | Radial Basis Function Neural Network |
SOTA | State of the Art |
ARMA | Autoregressive Moving Average |
ARIMA | Autoregressive Integrated Moving Average |
SARIMA | Seasonal Autoregressive Integrated Moving Average |
MIDAS | Multiple Instance Detection and Segmentation |
CEEMDAN | Complete Ensemble Empirical Mode Decomposition with Adaptive Noise |
CNN-BiLSTM-ECA | Convolutional Neural Network- Bidirectional LSTM and Efficient Channel Attention |
SSA | Singular Spectrum Analysis |
SVM | Support Vector Machine |
GWO | Grey Wolf Optimizer |
ECA | Exponential Component Attention |
SGD | Stochastic Gradient Descent |
WOA | Whale Optimization Algorithm |
KPSS | Kwiatkowski–Phillips–Schmidt–Shin (Test) |
ADF | Augmented Dickey–Fuller (Test) |
EEMD | Ensemble Empirical Mode Decomposition |
GRU | Gated Recurrent Unit |
VMD | Variational Mode Decomposition |
FIVMD | Interval Variational Modal Decomposition |
RMSE | Root Mean Square Error |
MSE | Mean Square Error |
MAPE | Mean Average Percentage Error |
MAE | Mean Average Error |
CSI | China Security Index |
SCI | Shanghai Composite Index |
References
- Asadi, S.; Hadavandi, E.; Mehmanpazir, F.; Nakhostin, M.M. Hybridization of evolutionary Levenberg–Marquardt neural networks and data pre-processing for stock market prediction. Knowl. Based Syst. 2012, 35, 245–258. [Google Scholar] [CrossRef]
- Akhter, S.; Misir, M.A. Capital Markets Efficiency: Evidence from the Emerging Capital Market with Particular Reference to Dhaka Stock Exchange. South Asian J. Manag. New Delhi 2005, 12, 35–51. [Google Scholar]
- Kim, H.Y.; Won, C.H. Forecasting the volatility of stock price index: A hybrid model integrating LSTM with multiple GARCH-type models. Expert Syst. Appl. 2018, 103, 25–37. [Google Scholar] [CrossRef]
- Chen, W.; Jiang, M.; Zhang, W.-G.; Chen, Z. A novel graph convolutional feature based convolutional neural network for stock trend prediction. Inf. Sci. 2021, 556, 67–94. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, W.; Lou, Y. Forecasting Stock Prices Using a Hybrid Deep Learning Model Integrating Attention Mechanism, Multi-Layer Perceptron, and Bidirectional Long-Short Term Memory Neural Network. IEEE Access 2020, 8, 117365–117376. [Google Scholar] [CrossRef]
- Naeini, M.P.; Taremian, H.; Hashemi, H.B. Stock market value prediction using neural networks. In Proceedings of the 2010 International Conference on Computer Information Systems and Industrial Management Applications (CISIM), Krackow, Poland, 8–10 October 2010; IEEE: New York City, NY, USA, 2010; pp. 132–136. [Google Scholar] [CrossRef]
- Qian, B.; Rasheed, K. Stock market prediction with multiple classifiers. Appl. Intell. 2007, 26, 25–33. [Google Scholar] [CrossRef]
- Guo, T.; Xu, Z.; Yao, X.; Chen, H.; Aberer, K.; Funaya, K. Robust Online Time Series Prediction with Recurrent Neural Networks. In Proceedings of the 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Montreal, QC, Canada, 17–19 October 2016; IEEE: New York City, NY, USA, 2016; pp. 816–825. [Google Scholar] [CrossRef]
- Chen, P.-A.; Chang, L.-C.; Chang, F.-J. Reinforced recurrent neural networks for multi-step-ahead flood forecasts. J. Hydrol. 2013, 497, 71–79. [Google Scholar] [CrossRef]
- Ibrahim, A.; Kashef, R.; Corrigan, L. Predicting market movement direction for bitcoin: A comparison of time series modeling methods. Comput. Electr. Eng. 2021, 89, 106905. [Google Scholar] [CrossRef]
- Chevallier, J. Nonparametric modeling of carbon prices. Energy Econ. 2011, 33, 1267–1282. [Google Scholar] [CrossRef]
- Zhao, X.; Han, M.; Ding, L.; Kang, W. Usefulness of economic and energy data at different frequencies for carbon price forecasting in the EU ETS. Appl. Energy 2018, 216, 132–141. [Google Scholar] [CrossRef]
- Fan, X.; Li, S.; Tian, L. Chaotic characteristic identification for carbon price and an multi-layer perceptron network prediction model. Expert Syst. Appl. 2015, 42, 3945–3952. [Google Scholar] [CrossRef]
- Bhadra, D.; Tarique, T.A.; Ahmed, S.U.; Shahjahan; Murase, K. An encoding technique for design and optimization of combinational logic circuit. In Proceedings of the 2010 13th International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 23–25 December 2010; IEEE: New York City, NY, USA, 2010; pp. 232–236. [Google Scholar] [CrossRef]
- Bhadra, D.; Hossain, M.; Alam, F. Speaker Independent Bangla Isolated Speech Recognition Using Deep Neural Network. In Proceedings of the International Conference on Technology, Business, and Justice Towards Smart Bangladesh|ICTBJ-2023, Mymensingh, Bangladesh, 5–6 June 2023; pp. 41–42. [Google Scholar]
- Fenghua, W.; Jihong, X.; Zhifang, H.; Xu, G. Stock Price Prediction Based on SSA and SVM. Procedia Comput. Sci. 2014, 31, 625–631. [Google Scholar] [CrossRef]
- Shen, G.; Tan, Q.; Zhang, H.; Zeng, P.; Xu, J. Deep Learning with Gated Recurrent Unit Networks for Financial Sequence Predictions. Procedia Comput. Sci. 2018, 131, 895–903. [Google Scholar] [CrossRef]
- Atsalakis, G.S.; Atsalaki, I.G.; Pasiouras, F.; Zopounidis, C. Bitcoin price forecasting with neuro-fuzzy techniques. Eur. J. Oper. Res. 2019, 276, 770–780. [Google Scholar] [CrossRef]
- Nagula, P.K.; Alexakis, C. A new hybrid machine learning model for predicting the bitcoin (BTC-USD) price. J. Behav. Exp. Financ. 2022, 36, 100741. [Google Scholar] [CrossRef]
- Zhu, B.; Wei, Y. Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology. Omega 2013, 41, 517–524. [Google Scholar] [CrossRef]
- Sun, G.; Chen, T.; Wei, Z.; Sun, Y.; Zang, H.; Chen, S. A Carbon Price Forecasting Model Based on Variational Mode Decomposition and Spiking Neural Networks. Energies 2016, 9, 54. [Google Scholar] [CrossRef]
- Atsalakis, G.S. Using computational intelligence to forecast carbon prices. Appl. Soft Comput. 2016, 43, 107–116. [Google Scholar] [CrossRef]
- Ni, L.; Li, Y.; Wang, X.; Zhang, J.; Yu, J.; Qi, C. Forecasting of Forex Time Series Data Based on Deep Learning. Procedia Comput. Sci. 2019, 147, 647–652. [Google Scholar] [CrossRef]
- Long, W.; Lu, Z.; Cui, L. Deep learning-based feature engineering for stock price movement prediction. Knowl. Based Syst. 2018, 164, 163–173. [Google Scholar] [CrossRef]
- Gonçalves, R.; Ribeiro, V.M.; Pereira, F.L.; Rocha, A.P. Deep learning in exchange markets. Inf. Econ. Policy 2019, 47, 38–51. [Google Scholar] [CrossRef]
- Peng, L.; Liu, S.; Liu, R.; Wang, L. Effective long short-term memory with differential evolution algorithm for electricity price prediction. Energy 2018, 162, 1301–1314. [Google Scholar] [CrossRef]
- Cen, Z.; Wang, J. Crude oil price prediction model with long short term memory deep learning based on prior knowledge data transfer. Energy 2018, 169, 160–171. [Google Scholar] [CrossRef]
- Zhang, G.P. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 2003, 50, 159–175. [Google Scholar] [CrossRef]
- Pai, P.-F.; Lin, C.-S. A hybrid ARIMA and support vector machines model in stock price forecasting. Omega 2004, 33, 497–505. [Google Scholar] [CrossRef]
- Shafie-Khah, M.; Moghaddam, M.P.; Sheikh-El-Eslami, M. Price forecasting of day-ahead electricity markets using a hybrid forecast method. Energy Convers. Manag. 2011, 52, 2165–2169. [Google Scholar] [CrossRef]
- Jeong, K.; Koo, C.; Hong, T. An estimation model for determining the annual energy cost budget in educational facilities using SARIMA (seasonal autoregressive integrated moving average) and ANN (artificial neural network). Energy 2014, 71, 71–79. [Google Scholar] [CrossRef]
- Ranaldi, L.; Gerardi, M.; Fallucchi, F. Fallucchi, CryptoNet: Using Auto-Regressive Multi-Layer Artificial Neural Networks to Predict Financial Time Series. Information 2022, 13, 524. [Google Scholar] [CrossRef]
- Chen, Y.; Fang, R.; Liang, T.; Sha, Z.; Li, S.; Yi, Y.; Zhou, W.; Song, H. Stock Price Forecast Based on CNN-BiLSTM-ECA Model. Sci. Program. 2021, 2021, 2446543. [Google Scholar] [CrossRef]
- He, K.; Yang, Q.; Ji, L.; Pan, J.; Zou, Y. Financial Time Series Forecasting with the Deep Learning Ensemble Model. Mathematics 2023, 11, 1054. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Jiang, W. An enhanced interval-valued decomposition integration model for stock price prediction based on comprehensive feature extraction and optimized deep learning. Expert Syst. Appl. 2023, 243, 122891. [Google Scholar] [CrossRef]
- Omoware, J.M.; Abiodun, O.J.; Wreford, A.I. Predicting Stock Series of Amazon and Google Using Long Short-Term Memory (LSTM). Asian Res. J. Curr. Sci. 2023, 5, 205–217. [Google Scholar]
- Patterson, J.; Gibson, A. Deep Learning: A Practitioner’s Approach, 1st ed.; O’Reilly: Sebastopol, CA, USA, 2017. [Google Scholar]
- Cao, J.; Li, Z.; Li, J. Financial time series forecasting model based on CEEMDAN and LSTM. Stat. Mech. Its Appl. 2019, 519, 127–139. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2017, arXiv:1706.03762. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: New York City, NY, USA, 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Connor, J.; Martin, R.; Atlas, L. Recurrent neural networks and robust time series prediction. IEEE Trans. Neural Netw. 1994, 5, 240–254. [Google Scholar] [CrossRef]
- Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 2005, 18, 602–610. [Google Scholar] [CrossRef]
- Xu, Y.; Chhim, L.; Zheng, B.; Nojima, Y. Stacked Deep Learning Structure with Bidirectional Long-Short Term Memory for Stock Market Prediction. In Neural Computing for Advanced Applications; Zhang, H., Zhang, Z., Wu, Z., Hao, T., Eds.; Communications in Computer and Information Science; Springer: Singapore, 2020; Volume 1265, pp. 447–460. [Google Scholar] [CrossRef]
- Nelson, D.M.Q.; Pereira, A.C.M.; de Oliveira, R.A. Stock market’s price movement prediction with LSTM neural networks. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; IEEE: New York City, NY, USA, 2017; pp. 1419–1426. [Google Scholar] [CrossRef]
- Mahmoodzadeh, A.; Nejati, H.R.; Mohammadi, M.; Ibrahim, H.H.; Rashidi, S.; Rashid, T.A. Forecasting tunnel boring machine penetration rate using LSTM deep neural network optimized by grey wolf optimization algorithm. Expert Syst. Appl. 2022, 209, 118303. [Google Scholar] [CrossRef]
- Shen, B.; Yang, S.; Gao, X.; Li, S.; Ren, S.; Chen, H. A Novel Co2-Eor Potential Evaluation Method Based on Bo-Lightgbm Algorithms Using Hybrid Feature Mining. SSRN Electron. J. 2022, 222, 211427. [Google Scholar] [CrossRef]
- Lin, Y.; Lin, Z.; Liao, Y.; Li, Y.; Xu, J.; Yan, Y. Forecasting the realized volatility of stock price index: A hybrid model integrating CEEMDAN and LSTM. Expert Syst. Appl. 2022, 206, 117736. [Google Scholar] [CrossRef]
- Li, X.; Ma, X.; Xiao, F.; Xiao, C.; Wang, F.; Zhang, S. Time-series production forecasting method based on the integration of Bidirectional Gated Recurrent Unit (Bi-GRU) network and Sparrow Search Algorithm (SSA). J. Pet. Sci. Eng. 2022, 208, 109309. [Google Scholar] [CrossRef]
- Zhang, S.; Luo, J.; Wang, S.; Liu, F. Oil price forecasting: A hybrid GRU neural network based on decomposition–reconstruction methods. Expert Syst. Appl. 2023, 218, 119617. [Google Scholar] [CrossRef]
- Umer, M.; Awais, M.; Muzammul, M. Stock Market Prediction Using Machine Learning(ML) Algorithms. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 2019, 8, 97–116. [Google Scholar] [CrossRef]
- Ullah, K.; Qasim, M. Google Stock Prices Prediction Using Deep Learning. In Proceedings of the 2020 IEEE 10th International Conference on System Engineering and Technology (ICSET), Shah Alam, Malaysia, 9 November 2020; IEEE: New York City, NY, USA, 2020; pp. 108–113. [Google Scholar] [CrossRef]
- Xu, Y.; Cohen, S.B. Stock Movement Prediction from Tweets and Historical Prices. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Melbourne, Australia, 15–20 July 2018; Association for Computational Linguistics: Stroudsburg, PA, USA, 2018; pp. 1970–1979. [Google Scholar] [CrossRef]
Stock | Related Work to Match Dataset | Start and End Time | Training–Test Dataset | Test Data Duration | Important Global Events During Test Period |
---|---|---|---|---|---|
Bitcoin | [34] | 2012.01.06–2020.01.23 | 80%:20% 2292, 587 | 2018.06.15–2020.01.23 | The Great Crypto Crash |
China Unicom | [33] | 2002.10.09–2021.03.17 | 80%:20% 3496, 888 | 2017.03.02–2021.03.17 | COVID-19 pandemic |
CSI 300 | [33] | 2005.01.18–2021.03.17 | 82%:18% 3170, 699 | 2018.05.02–2021.03.17 | COVID-19 pandemic |
SCI | [35] | 2014.04.10–2023.04.20 | 80%:20% 1699, 440 | 2021.06.29–2023.04.20 | Russia–Ukraine war |
CSI 100 | [35] | 2014.04.10–2023.04.20 | 81%:19% 1813, 440 | 2021.08.11–2023.04.20 | Russia–Ukraine war |
AMZN | [36] | 2011.01.05–2019.12.31 | 70%:30% 1523, 678 | 2017.04.21–2019.12.31 | COVID-19 pandemic |
GOOGL | [36] | 2013.01.02–2017.12.29 | 80%:20% 948, 251 | 2016.12.30–2017.12.29 | COVID-19 pandemic |
Dataset Name | Mean Value | Min Value | Max Value | Standard Deviation | Skewness | Kurtosis | PKPSS | PADF | PShapiro |
---|---|---|---|---|---|---|---|---|---|
Bitcoin | 2604.16 | 4.2 | 19,345.5 | 3632.54 | 1.488 | 1.443 | 0.01 | 0.558 | 0 |
China Unicom | 4.959 | 2.2 | 13.08 | 1.821 | 1.043 | 1.747 | 0.01 | 0.0345 | 6.6 × 10−42 |
CSI 300 | 3049.74 | 818.03 | 5877.2 | 1068.02 | −0.073 | −0.113 | 0.01 | 0.283 | 6.15 × 10−23 |
SCI | 3242.81 | 2003.49 | 5166.35 | 437.66 | 0.303 | 2.893 | 0.033 | 0.012 | 6.59 × 10−29 |
CSI 100 | 2108.96 | 1285.16 | 2983.26 | 305.46 | 0.136 | −0.484 | 0.01 | 0.231 | 2.56 × 10−10 |
33.31 | 17.59 | 54.25 | 9.03 | 0.387 | −0.799 | 0.01 | 0.909 | 3.84 × 10−19 | |
Amazon | 36.80 | 8.05 | 101.98 | 29.08 | 0.900 | −0.664 | 0.01 | 0.986 | 1.21 × 10−44 |
Model | RMSE | MAPE | MAE |
---|---|---|---|
Random walk [34] | 323.8311 | 0.0257 | 199.1424 |
ARMA [34] | 324.6788 | 0.0258 | 199.5287 |
MLP [34] | 341.0648 | 0.028 | 217.3472 |
LSTM [34] | 476.8439 | 0.0423 | 327.0795 |
CNN [34] | 378.66 | 0.0315 | 243.013 |
ARMA-CNN-LSTM [34] | 323.7705 | 0.0254 | 197.04 |
Proposed LSTM-mTrans-MLP model | 288.3428 | 0.0268 | 186.2394 |
Model | China Unicom | CSI 300 | ||||
---|---|---|---|---|---|---|
MSE | RMSE | MAE | MSE | RMSE | MAE | |
CNN [4] | 0.037 | 0.193 | 0.134 | 6218.092 | 78.855 | 63.981 |
LSTM [41] | 0.036 | 0.189 | 0.128 | 5809.153 | 76.218 | 58.679 |
BiLSTM [42,43] | 0.035 | 0.187 | 0.132 | 5091.610 | 71.356 | 52.119 |
CNN-LSTM [44] | 0.030 | 0.174 | 0.110 | 4905.472 | 70.039 | 52.457 |
CNN-BiLSTM [33] | 0.029 | 0.170 | 0.110 | 4643.541 | 68.144 | 51.143 |
BiLSTM-ECA [33] | 0.039 | 0.198 | 0.142 | 4161.203 | 64.507 | 46.453 |
CNN-LSTM-ECA [33] | 0.032 | 0.180 | 0.127 | 4568.808 | 67.593 | 51.061 |
CNN-BiLSTM-ECA [33] | 0.028 | 0.167 | 0.103 | 3434.408 | 58.604 | 39.111 |
Proposed Model | 0.018 | 0.133 | 0.092 | 3331.691 | 57.720 | 42.070 |
Model | SSEC | CSI100 | ||||
---|---|---|---|---|---|---|
MAPE | RMSE | MAE | MAPE | RMSE | MAE | |
SVR [35] | 8.4563 | 323.9135 | 269.5802 | 10.9925 | 469.6172 | 393.2344 |
GRU [35] | 5.9736 | 249.6411 | 205.2211 | 7.8870 | 415.6537 | 353.2755 |
LSTM [35] | 5.8748 | 246.9161 | 201.9285 | 7.0536 | 382.5686 | 313.8541 |
FIVMD-LSTM [35] | 2.2257 | 91.4471 | 75.5311 | 2.772 | 154.6032 | 116.5628 |
GWO-LSTM [45] | 4.2884 | 174.7373 | 145.6766 | 6.0828 | 326.4571 | 265.3836 |
BO-LightGBM [46] | 4.547 | 187.6829 | 154.3968 | 6.1401 | 334.3083 | 268.6137 |
CEEMDAN-LSTM [47] | 3.6285 | 139.3788 | 116.0111 | 5.2485 | 296.3123 | 233.4450 |
SSA-BIGRU [48] | 6.4242 | 281.892 | 217.7316 | 13.6878 | 545.2107 | 501.1394 |
VMD-SE-GRU [49] | 2.5404 | 110.3014 | 86.5217 | 3.316 | 192.8174 | 148.9184 |
FIVMD-MFA-WOA- LSTM [35] | 1.1244 | 50.5778 | 37.1922 | 1.9001 | 93.5436 | 78.2486 |
Proposed Model | 0.9674 | 41.2808 | 31.9298 | 2.0506 | 50.9529 | 37.4231 |
Model | AMAZON | |||
---|---|---|---|---|
R2 Score | MAE | MSE | RMSE | |
Linear regression [50] | 0.7163 | 72.47 | 7231.59 | 85.04 |
MA (3mo) [51] | 0.6938 | 21.08 | 609.22 | 24.68 |
Exponential Smoothing [52] | 0.6938 | 16.62 | 363.83 | 19.074 |
LSTM [36] | 0.9961 | 14.971 | 418.97 | 20.468 |
CNN-LSTM | 0.8375 | 6.045 | 47.366 | 6.882 |
CNN-BiLSTM | 0.9023 | 4.518 | 28.478 | 5.336 |
CNN-LSTM-ECA [33] | 0.9211 | 3.945 | 22.981 | 4.794 |
CNN-BiLSTM-ECA [33] | 0.9710 | 2.378 | 8.447 | 2.906 |
Proposed LSTM-mTrans-MLP Model | 0.9918 | 1.122 | 2.375 | 1.541 |
Model | ||||
R2 Score | MAE | MSE | RMSE | |
LSTM [33] | 0.9421 | 13.139 | 316.53 | 17.791 |
CNN-LSTM | 0.8757 | 1.324 | 2.765 | 1.663 |
CNN-BiLSTM | 0.8779 | 1.330 | 2.715 | 1.648 |
CNN-LSTM-ECA [33] | 0.9327 | 0.934 | 1.497 | 1.224 |
CNN-BiLSTM-ECA [33] | 0.9511 | 0.774 | 1.087 | 1.043 |
Proposed LSTM-mTrans-MLP Model | 0.9533 | 0.642 | 0.664 | 0.815 |
Stock Name | Related Work | Normalized Time (Start and End Time) | Training and Test Data Size | Test Dataset Duration | Evaluation Metrics On | |
---|---|---|---|---|---|---|
Normalized Test Dataset | Original Dataset (Table 3, Table 4, Table 5, Table 6 and Table 7) | |||||
China Unicom | [33] | 2011-01-05– 2024-07-01 | 2133, 1080 (67%:33%) | 2020-01-13– 2024-07-01 | RMSE: 0.133 MSE: 0.018 MAPE:2.4556% MAE: 0.1055 R2: 0.9595 | RMSE: 0.133 MSE: 0.018 MAPE: 1.5688% MAE: 0.092 R2: 0.9784 |
CSI 300 | [33] | 2011-01-05– 2024-07-01 | 2136, 1081 (67%:33%) | 2020-01-10– 2024-07-01 | RMSE: 61.6587 MSE: 3801.793 MAPE: 1.0397% MAE: 45.7935 R2: 0.9893 | RMSE: 57.720 MSE: 3331.691 MAPE: 1.049% MAE: 42.070 R2: 0.9919 |
SCI | [35] | 2011-01-05– 2024-07-01 | 2197, 1082 (67%:33%) | 2020-01-14– 2024-07-01 | RMSE: 38.2837 MSE: 1465.6407 MAPE: 0.8853% MAE: 28.6112 R2: 0.9726 | RMSE: 41.2808 MSE: 1704.101 MAPE: 0.967% MAE: 31.9298 R2: 0.9552 |
CSI 100 | [35] | 2011-08-29– 2024-07-01 | 2131, 1079 (67%:33%) | 2020-05-05– 2024-07-01 | RMSE: 47.5384 MSE: 2259.899 MAPE: 1.866% MAE: 33.4194 R2: 0.9875 | RMSE: 50.9529 MSE: 2596.198 MAPE: 2.051% MAE: 37.4231 R2: 0.96199 |
AMZN | [36] | 2011-01-05– 2024-07-01 | 2213, 1119 (67%:33%) | 2020-01-17– 2024-07-01 | RMSE: 7.4205 MSE: 55.0635 MAPE: 4.3972% MAE: 6.4952 R2: 0.9324 | RMSE: 1.541 MSE: 2.375 MAPE: 1.417% MAE: 1.122 R2: 0.9919 |
GOOGL | [36] | 2011-01-05– 2024-06-28 | 2213, 1119 (67%:33%) | 2020-01-16– 2024-06-28 | RMSE: 2.7205 MSE: 7.4012 MAPE: 1.8143% MAE: 2.0260 R2: 0.9907 | RMSE: 0.815 MSE: 0.664 MAPE: 1.318% MAE: 0.642 R2: 0.9533 |
Serial No. | Dataset Name | Training and Test Dataset Size | Training Time per Epoch (sec) | No. of Epochs for Training | Total Training Time | Prediction Time on Test Dataset (s) |
---|---|---|---|---|---|---|
1 | Bitcoin | 2292, 587 | 29.34 | 12 | 5 min 52.14 s | 1.027 |
2 | China Unicom | 3496, 888 | 19.38 | 22 | 7 min, 6.28 s | 1.022 |
3 | CSI 300 | 3170, 699 | 40.51 | 12 | 8 min 6.15 s | 0.022 |
4 | SCI | 1699, 440 | 23.19 | 17 | 6 min 34.23 s | 0.034 |
5 | CSI 100 | 1813, 440 | 22.01 | 14 | 5 min 8.17 s | 0.021 |
6 | AMZN | 1523, 678 | 19.01 | 25 | 7 min 55.31 s | 1.026 |
7 | GOOGL | 948, 251 | 13.86 | 22 | 5 min 5.32 s | 0.021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabir, M.R.; Bhadra, D.; Ridoy, M.; Milanova, M. LSTM–Transformer-Based Robust Hybrid Deep Learning Model for Financial Time Series Forecasting. Sci 2025, 7, 7. https://doi.org/10.3390/sci7010007
Kabir MR, Bhadra D, Ridoy M, Milanova M. LSTM–Transformer-Based Robust Hybrid Deep Learning Model for Financial Time Series Forecasting. Sci. 2025; 7(1):7. https://doi.org/10.3390/sci7010007
Chicago/Turabian StyleKabir, Md R., Dipayan Bhadra, Moinul Ridoy, and Mariofanna Milanova. 2025. "LSTM–Transformer-Based Robust Hybrid Deep Learning Model for Financial Time Series Forecasting" Sci 7, no. 1: 7. https://doi.org/10.3390/sci7010007
APA StyleKabir, M. R., Bhadra, D., Ridoy, M., & Milanova, M. (2025). LSTM–Transformer-Based Robust Hybrid Deep Learning Model for Financial Time Series Forecasting. Sci, 7(1), 7. https://doi.org/10.3390/sci7010007