Characterization of Hazelnut Trees in Open Field Through High-Resolution UAV-Based Imagery and Vegetation Indices
Abstract
:1. Introduction
- Applying VIs as predictors of health for hazelnut trees, trees with specific characteristics that put them apart from fruit trees where the VI approach has already been applied;
- Considering portions of trees (and not whole trees) in the analysis, to achieve better classification accuracy, and in particular less false negatives;
- Identifying a subset of VIs (GNDVI, GCI, NDREI, NRI, and GI) as best predictors, while excluding others (NDVI SAVI, RECI, and TCARI), in a literature context where the best VI predictors change in function of the tree considered.
2. Materials and Methods
2.1. Site Description
2.2. Image Collection
2.3. Image Processing
2.3.1. Plant Recognition
2.3.2. Image Slicing
2.4. Tree Tagging
2.5. Vegetation Indices (VIs)
2.6. Machine Learning Protocols
3. Results
3.1. Image Processing and Binary Classification of Plants
3.2. Computation and Selection of VIs
3.3. VIs as Predictors of Health Status
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Primicerio, J.; Caruso, G.; Comba, L.; Crisci, A.; Gay, P.; Guidoni, S.; Genesio, L.; Aimonino, D.R.; Vaccari, F.P. Individual Plant Definition and Missing Plant Characterization in vineyards from High-Resolution UAV Imagery. Eur. J. Remote Sens. 2017, 50, 179–186. [Google Scholar] [CrossRef]
- Comba, L.; Biglia, A.; Ricauda Aimonino, D.; Barge, P.; Tortia, C.; Gay, P. Enhanced vineyard descriptors combining UAV 2D and 3D crop models. In Proceedings of the AgEng 2018—New Engineering Concepts for Valued Agriculture, Wageningen, The Netherlands, 8–10 July 2018; pp. 49–56. Available online: https://hdl.handle.net/2318/1670903 (accessed on 20 August 2022).
- Velusamy, P.; Rajendran, S.; Mahendran, R.K.; Naseer, S.; Shafiq, M.; Choi, J.-G. Unmanned Aerial Vehicles (UAV) in Precision Agriculture: Applications and Challenges. Energies 2022, 15, 217. [Google Scholar] [CrossRef]
- Liu, J.; Xiang, J.; Jin, Y.; Liu, R.; Yan, J.; Wang, L. Boost Precision Agriculture with Unmanned Aerial Vehicle Remote Sensing and Edge Intelligence: A Survey. Remote Sens. 2021, 13, 4387. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sensors 2017, 2017, 353691. [Google Scholar] [CrossRef]
- Karthigesu, J.; Owari, T.; Tsuyuki, S.; Hiroshima, T. Improving the Estimation of Structural Parameters of a Mixed Conifer–Broadleaf Forest Using Structural, Textural, and Spectral Metrics Derived from Unmanned Aerial Vehicle Red Green Blue (RGB) Imagery. Remote Sens. 2024, 16, 1783. [Google Scholar] [CrossRef]
- Soussi, A.; Zero, E.; Sacile, R.; Trinchero, D.; Fossa, M. Smart Sensors and Smart Data for Precision Agriculture: A Review. Sensors 2024, 24, 2647. [Google Scholar] [CrossRef]
- Sassu, A.; Gambella, F.; Ghiani, L.; Mercenaro, L.; Caria, M.; Pazzona, A.L. Advances in Unmanned Aerial System Remote Sensing for Precision Viticulture. Sensors 2021, 21, 956. [Google Scholar] [CrossRef]
- Ecke, S.; Dempewolf, J.; Frey, J.; Schwaller, A.; Endres, E.; Klemmt, H.-J.; Tiede, D.; Seifert, T. UAV-Based Forest Health Monitoring: A Systematic Review. Remote Sens. 2022, 14, 3205. [Google Scholar] [CrossRef]
- Dash, J.P.; Pearse, G.D.; Watt, M.S. UAV Multispectral Imagery Can Complement Satellite Data for Monitoring Forest Health. Remote Sens. 2018, 10, 1216. [Google Scholar] [CrossRef]
- Saarinen, N.; Vastaranta, M.; Näsi, R.; Rosnell, T.; Hakala, T.; Honkavaara, E.; Wulder, M.A.; Luoma, V.; Tommaselli, A.M.G.; Imai, N.N.; et al. Assessing Biodiversity in Boreal Forests with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging. Remote Sens. 2018, 10, 338. [Google Scholar] [CrossRef]
- Gatziolis, D.; Lienard, J.F.; Vogs, A.; Strigul, N.S. 3D Tree Dimensionality Assessment Using Photogrammetry and Small Unmanned Aerial Vehicles. PLoS ONE 2015, 10, e0137765. [Google Scholar] [CrossRef]
- Han, X.; Thomasson, J.A.; Bagnall, G.C.; Pugh, N.A.; Horne, D.W.; Rooney, W.L.; Jung, J.; Chang, A.; Malambo, L.; Popescu, S.C.; et al. Measurement and Calibration of Plant-Height from Fixed-Wing UAV Images. Sensors 2018, 18, 4092. [Google Scholar] [CrossRef] [PubMed]
- Ozdarici-Ok, A.; Ozgun-Ok, A. Using remote sensing to identify individual tree species in orchards: A review. Sci. Hortic. 2023, 321, 112333. [Google Scholar] [CrossRef]
- Lobo Torres, D.; Queiroz Feitosa, R.; Nigri Happ, P.; Elena Cué La Rosa, L.; Marcato Junior, J.; Martins, J.; Olã Bressan, P.; Gonçalves, W.N.; Liesenberg, V. Applying Fully Convolutional Architectures for Semantic Segmentation of a Single Tree Species in Urban Environment on High Resolution UAV Optical Imagery. Sensors 2020, 20, 563. [Google Scholar] [CrossRef] [PubMed]
- Tumer, I.N.; Sengul, G.S.; Sertel, E.; Ustaoglu, B. Object-Based Detection of Hazelnut Orchards Using Very High Resolution Aerial Photographs. In Proceedings of the 12th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Novi Sad, Serbia, 15–18 July 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Lodato, F.; Pennazza, G.; Santonico, M.; Vollero, L.; Grasso, S.; Pollino, M. In-Depth Analysis and Characterization of a Hazelnut Agro-Industrial Context through the Integration of Multi-Source Satellite Data: A Case Study in the Province of Viterbo, Italy. Remote Sens. 2024, 16, 1227. [Google Scholar] [CrossRef]
- Sasso, D.; Lodato, F.; Sabatini, A.; Pennazza, G.; Vollero, L.; Santonico, M.; Merone, M. Hazelnut mapping detection system using optical and radar remote sensing: Benchmarking machine learning algorithms. Artif. Intell. Agric. 2024, 12, 97–108. [Google Scholar] [CrossRef]
- Cheng, Z.; Qi, L.; Cheng, Y.; Wu, Y.; Zhang, H. Interlacing Orchard Canopy Separation and Assessment using UAV Images. Remote Sens. 2020, 12, 767. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, Z.; Yu, R.; Tian, Q.; Zhu, X. Extraction of Information about Individual Trees from High-Spatial-Resolution UAV-Acquired Images of an Orchard. Remote Sens. 2020, 12, 133. [Google Scholar] [CrossRef]
- Mu, Y.; Fujii, Y.; Takata, D.; Zheng, B.; Noshita, K.; Honda, K.; Ninomiya, S.; Guo, W. Characterization of peach tree crown by using high-resolution images from an unmanned aerial vehicle. Hortic. Res. 2018, 5, 74. [Google Scholar] [CrossRef] [PubMed]
- Caruso, G.; Palai, G.; D’Onofrio, C.; Marra, F.; Gucci, R.; Caruso, T. Detecting biophysical and geometrical characteristics of the canopy of three olive cultivars in hedgerow planting systems using an UAV and VIS-NIR cameras. Acta Hortic. 2021, 1314, 269–274. [Google Scholar] [CrossRef]
- Stateras, D.; Kalivas, D. Assessment of Olive Tree Canopy Characteristics and Yield Forecast Model Using High Resolution UAV Imagery. Agriculture 2020, 10, 385. [Google Scholar] [CrossRef]
- Sarabia, R.; Aquino, A.; Ponce, J.M.; López, G.; Andújar, J.M. Automated Identification of Crop Tree Crowns from UAV Multispectral Imagery by Means of Morphological Image Analysis. Remote Sens. 2020, 12, 748. [Google Scholar] [CrossRef]
- Torres-Sánchez, J.; de Castro, A.; Peña, J.; Jiménez-Brenes, F.; Arquero, O.; Lovera, M.; López-Granados, F. Mapping the 3D structure of almond trees using UAV acquired photogrammetric point clouds and object-based image analysis. Biosyst. Eng. 2018, 176, 172–184. [Google Scholar] [CrossRef]
- Hobart, M.; Pflanz, M.; Weltzien, C.; Schirrmann, M. Growth Height Determination of Tree Walls for Precise Monitoring in Apple Fruit Production Using UAV Photogrammetry. Remote Sens. 2020, 12, 1656. [Google Scholar] [CrossRef]
- Ishida, T.; Kurihara, J.; Viray, F.A.; Namuco, S.B.; Paringit, E.C.; Perez, G.J.; Takahashi, Y.; Marciano, J.J. A novel approach for vegetation classification using UAV-based hyperspectral imaging. Comput. Electron. Agric. 2018, 144, 80–85. [Google Scholar] [CrossRef]
- Blanco, V.; Blaya-Ros, P.J.; Castillo, C.; Soto-Vallés, F.; Torres-Sánchez, R.; Domingo, R. Potential of UAS-Based Remote Sensing for Estimating Tree Water Status and Yield in Sweet Cherry Trees. Remote Sens. 2020, 12, 2359. [Google Scholar] [CrossRef]
- Gallardo-Salazar, J.L.; Pompa-García, M. Detecting Individual Tree Attributes and Multispectral Indices Using Unmanned Aerial Vehicles: Applications in a Pine Clonal Orchard. Remote Sens. 2020, 12, 4144. [Google Scholar] [CrossRef]
- Vinci, A.; Brigante, R.; Traini, C.; Farinelli, D. Geometrical Characterization of Hazelnut Trees in an Intensive Orchard by an Unmanned Aerial Vehicle (UAV) for Precision Agriculture Applications. Remote Sens. 2023, 15, 541. [Google Scholar] [CrossRef]
- Altieri, G.; Maffia, A.; Pastore, V.; Amato, M.; Celano, G. Use of High-Resolution Multispectral UAVs to Calculate Projected Ground Area in Corylus avellana L. Tree Orchard. Sensors 2022, 22, 7103. [Google Scholar] [CrossRef]
- Martelli, R.; Civitarese, V.; Barbanti, L.; Ali, A.; Sperandio, G.; Acampora, A.; Misturini, D.; Assirelli, A. Multi-Parametric Approach to Management Zone Delineation in a Hazelnut Grove in Italy. Sustainability 2023, 15, 10106. [Google Scholar] [CrossRef]
- Comba, L.; Biglia, A.; Ricauda Aimonino, D.; Gay, P. Unsupervised detection of vineyards by 3D point-cloud UAV photogrammetry for precision agriculture. Comput. Electron. Agric. 2018, 155, 84–95. [Google Scholar] [CrossRef]
- Pagliai, A.; Ammoniaci, M.; Sarri, D.; Lisci, R.; Perria, R.; Vieri, M.; D’Arcangelo, M.E.M.; Storchi, P.; Kartsiotis, S.-P. Comparison of Aerial and Ground 3D Point Clouds for Canopy Size Assessment in Precision Viticulture. Remote Sens. 2022, 14, 1145. [Google Scholar] [CrossRef]
- Zhang, C.; Valente, J.; Kooistra, L.; Guo, L.; Wang, W. Orchard management with small unmanned aerial vehicles: A survey of sensing and analysis approaches. Precision Agric. 2021, 22, 2007–2052. [Google Scholar] [CrossRef]
- Abdulridha, J.; Batuman, O.; Ampatzidis, Y. UAV-Based Remote Sensing Technique to Detect Citrus Canker Disease Utilizing Hyperspectral Imaging and Machine Learning. Remote Sens. 2019, 11, 1373. [Google Scholar] [CrossRef]
- Garcia-Ruiz, F.; Sankaran, S.; Mari Maja, J.; Suk Lee, W.; Rasmussen, J.; Ehsani, R. Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees. Comput. Electron. Agric. 2013, 91, 106–115. [Google Scholar] [CrossRef]
- Calderón, R.; Navas-Cortés, J.A.; Lucena, C.; Zarco-Tejada, P.J. High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote sensing of environment. Remote Sens. Environ. 2013, 139, 231–245. [Google Scholar] [CrossRef]
- Iatrou, G.; Mourelatos, S.; Zartaloudis, Z.; Iatrou, M.; Gewehr, S.; Kalaitzopoulou, S. Remote Sensing for the Management of Verticillium Wilt of Olive. Fresenius Environ. Bull. 2016, 25, 3622–3628. [Google Scholar]
- Stella, A.; Caliendo, G.; Melgani, F.; Goller, R.; Barazzuol, M.; La Porta, N. Leaf Wetness Evaluation Using Artificial Neural Network for Improving Apple Scab Fight. Environments 2017, 4, 42. [Google Scholar] [CrossRef]
- Jarolmasjed, S.; Sankaran, S.; Marzougui, A.; Kostick, S.; Si, Y.; Quirós Vargas, J.J.; Evans, K. High-Throughput Phenotyping of Fire Blight Disease Symptoms Using Sensing Techniques in Apple. Front. Plant Sci. 2019, 10, 576. [Google Scholar] [CrossRef]
- Cunha, J.; Gaspar, P.D.; Assunção, E.; Mesquita, R. Prediction of the Vigor and Health of Peach Tree Orchard. In Proceedings of the Computational Science and Its Applications—ICCSA 2021, Cagliari, Italy, 13–16 September 2021; Gervasi, O., Murgante, M., Misra, S., Garau, C., Blečić, I., Taniar, D., Apduhan, B., Rocha, A., Tarantino, E., Torre, C., Eds.; ICCSA 2021. Lecture Notes in Computer Science (LNTCS). Springer: Cham, Switzerland, 2021; Volume 12951, pp. 541–551. [Google Scholar] [CrossRef]
- Betti Sorbelli, F.; Corò, F.; Das, S.K.; Di Bella, E.; Maistrello, L.; Palazzetti, L.; Pinotti, C.M. A Drone-based Application for Scouting Halyomorpha halys Bugs in Orchards with Multifunctional Nets. In Proceedings of the IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops), Pisa, Italy, 21–25 March 2022; pp. 127–129. [Google Scholar] [CrossRef]
- Ichim, L.; Ciciu, R.; Popescu, D. Using Drones and Deep Neural Networks to Detect Halyomorpha halys in Ecological Orchards. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 437–440. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Grando, S. Evolutionary Plant Breeding as a Response to the Complexity of Climate Change. IScience 2020, 23, 101815. [Google Scholar] [CrossRef]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef]
- Corredor-Moreno, P.; Saunders, D.G.O. Expecting the unexpected: Factors influencing the emergence of fungal and oomycete plant pathogens. New Phytol. 2020, 225, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Eurostat. Available online: https://ec.europa.eu/eurostat/cache/metadata/en/aei_fm_salpest09_esms.htm (accessed on 14 December 2023).
- Kaur, H.; Garg, H. Pesticides: Environmental Impacts and Management Strategies. In Pesticides—Toxic Aspects; Larramendy, M.L., Soloneski, S., Eds.; IntechOpen Limited: London, UK, 2014; pp. 187–230. [Google Scholar] [CrossRef]
- Provost, C.; Pedneault, K. The organic vineyard as a balanced ecosystem: Improved organic grape management and impacts on wine quality. Sci. Hortic. 2016, 208, 57–77. [Google Scholar] [CrossRef]
- FAO. Available online: https://www.fao.org/faostat/en/#search/hazelnut%20production (accessed on 27 December 2023).
- Girona, J.; Cohen, M.; Mata, M.; Marsal, J.; Miravete, C. Physiological, growth and yield responses of hazelnut (Corylus avellana L.) to different irrigation regimes. Acta Hortic. 1994, 351, 463–472. [Google Scholar] [CrossRef]
- Cristofori, V.; Muleo, R.; Bignami, C.; Rugini, E. Long term evaluation of hazelnut response to drip irrigation. Acta Hortic. 2014, 1052, 179–185. [Google Scholar] [CrossRef]
- AliNiazee, M.T. Ecology and management of hazelnut pests. Annu. Rev. Entomol. 1998, 43, 395–419. [Google Scholar] [CrossRef] [PubMed]
- Mezzalama, M.; Guarnaccia, V.; Martano, G.; Spadaro, D. Presence of Powdery Mildew Caused by Erysiphe corylacearum on Hazelnut (Corylus avellana) in Italy. Plant Dis. 2021, 105, 1565. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, J.R.; Fabi, A.; Ridolfi, R.; Varvaro, L. Epidemiological study of hazelnut bacterial blight in central Italy by using laboratory analysis and geostatistics. PLoS ONE 2013, 8, e56298. [Google Scholar] [CrossRef] [PubMed]
- Matić, S.; Caruso, A.G.; D’Errico, C.; Botto, C.S.; Noris, E.; Trkulja, V.; Panno, S.; Davino, S.; Moizio, M. Powdery mildew caused by Erysiphe corylacearum: An emerging problem on hazelnut in Italy. PLoS ONE 2024, 19, e0301941. [Google Scholar] [CrossRef]
- An, N.; Turp, M.T.; Türkeş, M.; Kurnaz, M.L. Mid-Term Impact of Climate Change on Hazelnut Yield. Agriculture 2020, 10, 159. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R; Springer: New York, NY, USA, 2021; pp. 1–607. [Google Scholar] [CrossRef]
Tested Model | Binary Classification | Precision | Recall | F1-Score |
---|---|---|---|---|
Random forest | 0 | 0.67 | 0.56 | 0.61 |
1 | 0.64 | 0.74 | 0.69 | |
Accuracy | 0.65 | |||
Macro average | 0.66 | 0.65 | 0.65 | |
Weighted average | 0.66 | 0.65 | 0.65 | |
Logistic regression | 0 | 0.67 | 0.57 | 0.62 |
1 | 0.65 | 0.73 | 0.69 | |
Accuracy | 0.66 | |||
Macro average | 0.66 | 0.65 | 0.65 | |
Weighted average | 0.66 | 0.66 | 0.65 | |
KNN | 0 | 0.64 | 0.58 | 0.61 |
1 | 0.64 | 0.70 | 0.67 | |
Accuracy | 0.64 | |||
Macro average | 0.64 | 0.64 | 0.64 | |
Weighted average | 0.64 | 0.64 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morisio, M.; Noris, E.; Pagliarani, C.; Pavone, S.; Moine, A.; Doumet, J.; Ardito, L. Characterization of Hazelnut Trees in Open Field Through High-Resolution UAV-Based Imagery and Vegetation Indices. Sensors 2025, 25, 288. https://doi.org/10.3390/s25010288
Morisio M, Noris E, Pagliarani C, Pavone S, Moine A, Doumet J, Ardito L. Characterization of Hazelnut Trees in Open Field Through High-Resolution UAV-Based Imagery and Vegetation Indices. Sensors. 2025; 25(1):288. https://doi.org/10.3390/s25010288
Chicago/Turabian StyleMorisio, Maurizio, Emanuela Noris, Chiara Pagliarani, Stefano Pavone, Amedeo Moine, José Doumet, and Luca Ardito. 2025. "Characterization of Hazelnut Trees in Open Field Through High-Resolution UAV-Based Imagery and Vegetation Indices" Sensors 25, no. 1: 288. https://doi.org/10.3390/s25010288
APA StyleMorisio, M., Noris, E., Pagliarani, C., Pavone, S., Moine, A., Doumet, J., & Ardito, L. (2025). Characterization of Hazelnut Trees in Open Field Through High-Resolution UAV-Based Imagery and Vegetation Indices. Sensors, 25(1), 288. https://doi.org/10.3390/s25010288