Design and Evaluation of a Novel Variable Stiffness Hip Joint Exoskeleton
Abstract
:1. Introduction
2. Mechanical and Mathematical Models of the BVS-HJE
2.1. Hip Joint Exoskeleton Mechanism
2.2. Variable Stiffness Mechanism
2.3. Mathematical Modeling of the BVS-HJE
3. Controller Design
4. Results
4.1. Simulation Results
4.2. Test Setup
4.3. Verification Experiment on the Variable Stiffness Characteristics of the Mechanism
4.3.1. Experiment in Which the Output End of the Mechanism Is Fixed
4.3.2. Experiment in Which the Output End of the Mechanism Is Fixed on the Hip Exoskeleton with Movement
4.4. Verification Experiment of the Coordinated Control of the Output Torque and Stiffness of the BVS-HJE
4.5. Experiment on Assisted Leg Swing with Passive Compliant Control
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sado, F.; Yap, H.J.; Ghazilla, R.A.R.; Ahmad, N.B. Design and control of a wearable lower-body exoskeleton for squatting and walking assistance in manual handling works. Mechatronics 2019, 63, 102272. [Google Scholar] [CrossRef]
- Coenen, P.; Gouttebarge, V.; van der Burght, A.S.; van Dieën, J.H.; Frings-Dresen, M.H.; van der Beek, A.J.; Burdorf, A. The effect of lifting during work on low back pain: A health impact assessment based on a meta-analysis. Occup. Environ. Med. 2014, 71, 871–877. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.; Gabriel, A.T.; Quaresma, C.; Nunes, I.L. Risk Factors for Lower Limb Work-Related Musculoskeletal Disorders. In Occupational and Environmental Safety and Health V; Arezes, P.M., Melo, R.B., Carneiro, P., Branco, J.C., Colim, C.A., Costa, N., Costa, S., Duarte, J., Guedes, J.C., Perestrelo, G., et al., Eds.; Studies in Systems, Decision and Control; Springer: Berlin/Heidelberg, Germany, 2023; Volume 492, pp. 187–203. [Google Scholar]
- Sasaki, M.; Horio, A.; Wakasa, M.; Uemura, S.; Osawa, Y. Influence of quadriceps femoris fatigue on low back load during lifting of loads at different distances from the toes. J. Phys. Ther. Sci. 2008, 20, 81–89. [Google Scholar] [CrossRef]
- Chen, B.; Zhong, C.H.; Zhao, X.; Ma, H.; Guan, X.; Li, X.; Liang, F.Y.; Cheng, J.C.Y.; Qin, L.; Law, S.W.; et al. A wearable exoskeleton suit for motion assistance to paralysed patients. J. Orthop. Transl. 2017, 11, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; He, Y.; Yang, J.; Cao, W.; Wu, X. Design and analysis of a novel 12-dof self-balancing lower extremity exoskeleton for walking assistance. Mech. Mach. Theory 2022, 167, 104519. [Google Scholar] [CrossRef]
- Gao, M.; Wang, Z.; Pang, Z.; Sun, J.; Li, J.; Li, S.; Zhang, H. Electrically Driven Lower Limb Exoskeleton Rehabilitation Robot Based on Anthropomorphic Design. Machines 2022, 10, 266. [Google Scholar] [CrossRef]
- Li, J.F.; Cao, Q.; Dong, M.J.; Zhang, C.Z. Compatibility evaluation of a 4-DOF ergonomic exoskeleton for upper limb rehabilitation. Mech. Mach. Theory 2021, 156, 104146. [Google Scholar] [CrossRef]
- McCann, C.M.; Hohimer, C.J.; O’Neill, C.T.; Young, H.T.; Bertoldi, K.; Walsh, C.J. In-situ measurement of multi-Axis torques applied by wearable soft robots for shoulder assistance. IEEE Trans. Med. Robot. Bionics 2023, 5, 363–374. [Google Scholar] [CrossRef]
- Gull, M.A.; Thoegersen, M.; Bengtson, S.H.; Mohammadi, M.; Andreasen Struijk, L.N.S.; Moeslund, T.B.; Bak, T.; Bai, S. A 4-DOF Upper Limb Exoskeleton for Physical Assistance: Design, Modeling, Control and Performance Evaluation. Appl. Sci. 2021, 11, 5865. [Google Scholar] [CrossRef]
- Fang, Q.; Li, G.; Xu, T.; Zhao, J.; Cai, H.; Zhu, Y. A Simplified Inverse Dynamics Modelling Method for a Novel Rehabilitation Exoskeleton with Parallel Joints and Its Application to Trajectory Tracking. Math. Probl. Eng. 2019, 2019, 4602035. [Google Scholar] [CrossRef]
- Zhang, F.; Lin, L.; Yang, L.; Fu, Y. Design of an Active and Passive Control System of Hand Exoskeleton for Rehabilitation. Appl. Sci. 2019, 9, 2291. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.P.; Tian, Y. Adaptive interaction torque-based AAN control for lower limb rehabilitation exoskeleton. ISA Trans. 2022, 128, 184–197. [Google Scholar] [CrossRef] [PubMed]
- Meng, W.; Liu, Q.; Zhou, Z.; Ai, Q.; Sheng, B.; Xie, S.S. Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics 2015, 31, 132–145. [Google Scholar] [CrossRef]
- Vanderborght, B.; Albu-Schäffer, A.; Bicchi, A.; Burdet, E.; Caldwell, D.G.; Carloni, R.; Catalano, M.; Eiberger, O.; Friedl, W.; Ganesh, G.; et al. Variable impedance actuators: A review. Robot. Auton. Syst. 2013, 61, 1601–1614. [Google Scholar] [CrossRef]
- Rodriguez-Cianca, D.; Weckx, M.; Jimenez-Fabian, R.; Torricelli, D.; Gonzalez-Vargas, J.; Sanchez-Villamañan, M.C.; Sartori, M.; Berns, K.; Vanderborght, B.; Pons, J.L.; et al. A Variable Stiffness Actuator Module With Favorable Mass Distribution for a Bio-inspired Biped Robot. Front. Neurorobotics 2019, 13, 20. [Google Scholar] [CrossRef]
- Li, Z.; Huang, B.; Ye, Z.; Deng, M.; Yang, C. Physical Human-Robot Interaction of a Robotic Exoskeleton By Admittance Control. IEEE Trans. Ind. Electron. 2018, 65, 9614–9624. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, Z.; Huang, C.; Chen, L.; Guo, Q. Human-exoskeleton coupling dynamics in the swing of lower limb. Appl. Math. Model. 2022, 104, 439–454. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, Q.; Li, T.; Yan, Y. Output Constrained Control of Lower Limb Exoskeleton Based on Knee Motion Probabilistic Model With Finite-Time Extended State Observer. IEEE/ASME Trans. Mechatron. 2023, 8, 2305–2316. [Google Scholar] [CrossRef]
- Luo, R.M.; Sun, S.Q.; Zhao, X.Y.; Zhang, Y.X.; Tang, Y. Adaptive CPG-based impedance control for assistive lower limb exoskeleton. In Proceedings of the 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), Kuala Lumpur, Malaysia, 12–15 December 2018. [Google Scholar]
- Hsieh, H.C.; Chen, D.F.; Chien, L.; Lan, C.C. Design of a Parallel Actuated Exoskeleton for Adaptive and Safe Robotic Shoulder Rehabilitation. IEEE-ASME Trans. Mechatron. 2017, 22, 2034–2045. [Google Scholar] [CrossRef]
- Ando, K.; Hirokawa, M.; Suzuki, K. Fusion of musculoskeletal and dynamic models to estimate knee joint impedance for exoskeleton control. In Proceedings of the 2023 IEEE/SICE International Symposium on System Integration (SII), Atlanta, GA, USA, 17–20 January 2023. [Google Scholar]
- Qu, Z.; Wei, W.; Wang, W.; Zha, S.; Li, T.; Gu, J.; Yue, C. Research on fuzzy adaptive impedance control of lower extremity exoskeleton. In Proceedings of the 2019 IEEE Int. Conf. on Mechatronics and Automation (ICMA), Tianjin, China, 4–7 August 2019. [Google Scholar]
- An, M.L.; Wang, X.J.; Miao, Y.A.; Wang, S.P.; Miao, Y.Q. Trajectory design and adaptive impedance control of lower limb exoskeleton. In Proceedings of the 16th IEEE Conference on Industrial Electronics and Applications (ICIEA), Chengdu, China, 1–4 August 2021. [Google Scholar]
- Migliore, S.A.; Brown, E.A.; Deweerth, S.P. Biologically Inspired Joint Stiffness Control. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation (ICRA), Barcelona, Spain, 18–22 April 2005. [Google Scholar]
- Wolf, S.; Grioli, G.; Eiberger, O.; Friedl, W.; Grebenstein, M.; Höppner, H.; Burdet, E.; Caldwell, D.G.; Carloni, R.; Catalano, M.G.; et al. Variable stiffness actuators: Review on design and components. IEEE/ASME Trans. Mechatron. 2016, 21, 2418–2430. [Google Scholar] [CrossRef]
- Pott, P.P.; Müller, R.; Grun, M.; Konigorski, U.; Schlaak, H.F. Serial-elastic actuators for active orthoses. At-Automatisierungstechnik 2013, 61, 638–644. [Google Scholar] [CrossRef]
- Herbin, P.; Pajor, M. Human-robot cooperative control system based on serial elastic actuator bowden cable drive in ExoArm 7-DOF upper extremity exoskeleton. Mech. Mach. Theory 2021, 163, 104372. [Google Scholar] [CrossRef]
- Bergmann, L.; Voss, D.; Leonhardt, S.; Ngo, C. Lower-Limb Exoskeleton With Compliant Actuators: Human Cooperative Control. IEEE Trans. Med. Robot. Bionics 2023, 5, 717–729. [Google Scholar] [CrossRef]
- Hollander, K.W.; Sugar, T.G.; Herring, D.E. Adjustable robotic tendon using a ‘Jack Spring’. In Proceedings of the 9th IEEE International Conference on Rehabilitation Robotics (ICORR), Chicago, IL, USA, 28 Jun–1 July 2005. [Google Scholar]
- Morita, T.; Sugano, S. Design and development of a new robot joint using a mechanical impedance adjuster. In Proceedings of the 1995 IEEE International Conference on Robotics and Automation (ICRA), Nagoya, Japan, 21–27 May 1995. [Google Scholar]
- Li, Z.Y.; Bai, S.P.; Madsen, O.; Chen, W.H.; Zhang, J.B. Design, modeling and testing of a compact variable stiffness mechanism for exoskeletons. Mech. Mach. Theory 2020, 151, 103905. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, Q.; Chen, B.; Xu, D.; Shao, Z. Design and Evaluation of a Novel Torque-Controllable Variable Stiffness Actuator with Reconfigurability. IEEE/ASME Trans. Mechatron. 2022, 27, 292–303. [Google Scholar] [CrossRef]
- Zhu, Y.; Bai, S.P. Human Compatible Stiffness Modulation of a Novel VSA for Physical Human-Robot Interaction. IEEE Robot. Autom. Lett. 2023, 8, 3023–3030. [Google Scholar] [CrossRef]
- Shao, Y.X.; Zhang, W.X.; Su, Y.J.; Ding, X.L. Design and optimisation of load-adaptive actuator with variable stiffness for compact ankle exoskeleton. Mech. Mach. Theory 2021, 161, 104323. [Google Scholar] [CrossRef]
- Hurst, J.W.; Rizzi, A.A. Series compliance for an efficient running gait—Lessons learned from the electric cable differential leg. IEEE Robot. Autom. Mag. 2008, 15, 42–51. [Google Scholar] [CrossRef]
- Tonietti, G.; Schiavi, R.; Bicchi, A. Design and Control of a Variable Stiffness Actuator for Safe and Fast Physical Human/Robot Interaction. In Proceedings of the 2005 IEEE International Conference on Robotics & Automation (ICRA), Barcelona, Spain, 18–22 April 2005. [Google Scholar]
- Kang, G.; Oh, H.S.; Seo, J.K.; Kim, U.; Choi, H.R. Variable admittance control of robot manipulators based on human intention. IEEE/ASME Trans. Mechatron. 2019, 24, 1023–1032. [Google Scholar] [CrossRef]
- Grosu, V.; Rodriguez-Guerrero, C.; Grosu, S.; Vanderborght, B.; Lefeber, D. Design of smart modular variable stiffness actuators for robotic-assistive devices. IEEE/ASME Trans. Mechatron. 2017, 24, 1777–1785. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, Q.; Chen, B.; Zhao, Z. Design and Voluntary Control of Variable Stiffness Exoskeleton Based on sEMG Driven Model. IEEE Robot. Autom. Lett. 2022, 7, 5787–5794. [Google Scholar] [CrossRef]
- Hogan, N. Adaptive control of mechanical impedance by coactivation of antagonist muscles. IEEE Trans. Autom. Control 1984, 28, 681–690. [Google Scholar] [CrossRef]
Parameters | Value (m) |
---|---|
0.02 | |
0.04 | |
0.007 | |
0.027 | |
0.045 | |
0.018 | |
0.015 | |
0.045 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; Yang, C.; Jiang, F.; Tian, B. Design and Evaluation of a Novel Variable Stiffness Hip Joint Exoskeleton. Sensors 2024, 24, 6693. https://doi.org/10.3390/s24206693
Yang T, Yang C, Jiang F, Tian B. Design and Evaluation of a Novel Variable Stiffness Hip Joint Exoskeleton. Sensors. 2024; 24(20):6693. https://doi.org/10.3390/s24206693
Chicago/Turabian StyleYang, Tao, Chifu Yang, Feng Jiang, and Bowen Tian. 2024. "Design and Evaluation of a Novel Variable Stiffness Hip Joint Exoskeleton" Sensors 24, no. 20: 6693. https://doi.org/10.3390/s24206693
APA StyleYang, T., Yang, C., Jiang, F., & Tian, B. (2024). Design and Evaluation of a Novel Variable Stiffness Hip Joint Exoskeleton. Sensors, 24(20), 6693. https://doi.org/10.3390/s24206693