Advances in Portable Optical Microscopy Using Cloud Technologies and Artificial Intelligence for Medical Applications
Abstract
:1. Introduction
2. Portability
- Timely delivery of results. The ability to deliver nearly real-time results eliminates the need to wait for lengthy laboratory reports, facilitating quicker decision making [16].
- Accuracy. The qualitative and quantitative analysis provided by these devices needs to be comparable to benchtop devices and laboratory equipment to gain acceptance and adoption by the user community [16].
- User-friendly operation. The device should require minimal training and be intuitive to use, making it accessible to a wider range of users [16].
- Low energy consumption. Minimal energy requirements allow operation for extended periods, which is crucial for field applications [35].
- Affordability. The setup must be cost-effective to encourage widespread application and accessibility [16].
2.1. Singlet Microscopy
2.2. Lens-Less Microscopy
2.3. Photoacoustic Microscopy
Portable PAM
2.4. Smartphone-Based Microscopy
2.4.1. System Design and Devices’ Classification
2.4.2. Applications
2.4.3. Advantages of Smartphone-Based Microscopy
2.4.4. Challenges and Developments
3. Internet of Things
Applications in Portable Microscopy
4. Microscopic Image Processing: Requirements for Portable Devices
4.1. Image Enhancement
4.2. Segmentation and Classification
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Banik, S.; Melanthota, S.K.; Arbaaz; Vaz, J.M.; Kadambalithaya, V.M.; Hussain, I.; Dutta, S.; Mazumder, N. Recent Trends in Smartphone-Based Detection for Biomedical Applications: A Review. Anal. Bioanal. Chem. 2021, 413, 2389–2406. [Google Scholar] [CrossRef]
- Khan, S.U.; Islam, N.; Jan, Z.; Din, I.U.; Khan, A.; Faheem, Y. An E-Health Care Services Framework for the Detection and Classification of Breast Cancer in Breast Cytology Images as an IoMT Application. Future Gener. Comput. Syst. 2019, 98, 286–296. [Google Scholar] [CrossRef]
- Siddiqui, S.Y.; Haider, A.; Ghazal, T.M.; Khan, M.A.; Naseer, I.; Abbas, S.; Rahman, M.; Khan, J.A.; Ahmad, M.; Hasan, M.K.; et al. IoMT Cloud-Based Intelligent Prediction of Breast Cancer Stages Empowered with Deep Learning. IEEE Access 2021, 9, 146478–146491. [Google Scholar] [CrossRef]
- Bibi, N.; Sikandar, M.; Ud Din, I.; Almogren, A.; Ali, S. IoMT-Based Automated Detection and Classification of Leukemia Using Deep Learning. J. Healthc. Eng. 2020, 2020, 6648574. [Google Scholar] [CrossRef]
- Long, E.; Lin, H.; Liu, Z.; Wu, X.; Wang, L.; Jiang, J.; An, Y.; Lin, Z.; Li, X.; Chen, J.; et al. An Artificial Intelligence Platform for the Multihospital Collaborative Management of Congenital Cataracts. Nat. Biomed. Eng. 2017, 1, 0024. [Google Scholar] [CrossRef]
- Masters, B.R. History of the Optical Microscope in Cell Biology and Medicine. In Encyclopedia of Life Sciences; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Khandpur, R.S. Microscope, Bright Field. In Compendium of Biomedical Instrumentation; Wiley: Hoboken, NJ, USA, 2020; pp. 1275–1279. [Google Scholar]
- Murphy, D.B.; Davidson, M.W. Fundamentals of Light Microscopy. In Fundamentals of Light Microscopy and Electronic Imaging; Wiley: Hoboken, NJ, USA, 2012; pp. 1–19. [Google Scholar]
- Davidson, M.W.; Abramowitz, M. Optical Microscopy. In Encyclopedia of Imaging Science and Technology; Wiley: Hoboken, NJ, USA, 2002. [Google Scholar]
- Winey, M.; Meehl, J.B.; O’Toole, E.T.; Giddings, T.H. Conventional Transmission Electron Microscopy. Mol. Biol. Cell 2014, 25, 319–323. [Google Scholar] [CrossRef]
- Bian, K.; Gerber, C.; Heinrich, A.J.; Müller, D.J.; Scheuring, S.; Jiang, Y. Scanning Probe Microscopy. Nat. Rev. Methods Primers 2021, 1, 36. [Google Scholar] [CrossRef]
- Micó, V.; Ferreira, C.; Zalevsky, Z.; García, J. Basic Principles and Applications of Digital Holographic Microscopy. Microsc. Sci. Technol. Appl. Educ. 2010, 2, 1411–1418. [Google Scholar]
- Jeon, S.; Kim, J.; Lee, D.; Baik, J.W.; Kim, C. Review on Practical Photoacoustic Microscopy. Photoacoustics 2019, 15, 100141. [Google Scholar] [CrossRef]
- Holik, A.S. Optical Microscopy. In Encyclopedia of Materials: Science and Technology; Elsevier: Amsterdam, The Netherlands, 2001; pp. 6458–6463. [Google Scholar]
- Rabha, D.; Sarmah, A.; Nath, P. Design of a 3D Printed Smartphone Microscopic System with Enhanced Imaging Ability for Biomedical Applications. J. Microsc. 2019, 276, 13–20. [Google Scholar] [CrossRef]
- Bian, Y.; Xing, T.; Jiao, K.; Kong, Q.; Wang, J.; Yang, X.; Yang, S.; Jiang, Y.; Shen, R.; Shen, H.; et al. Computational Portable Microscopes for Point-of-Care-Test and Tele-Diagnosis. Cells 2022, 11, 3670. [Google Scholar] [CrossRef]
- McLeod, E.; Ozcan, A. Unconventional Methods of Imaging: Computational Microscopy and Compact Implementations. Rep. Prog. Phys. 2016, 79, 076001. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, Q. Biosensors and Bioelectronics on Smartphone for Portable Biochemical Detection. Biosens. Bioelectron. 2016, 75, 273–284. [Google Scholar] [CrossRef]
- Madrid, R.E.; Ashur Ramallo, F.; Barraza, D.E.; Chaile, R.E. Smartphone-Based Biosensor Devices for Healthcare: Technologies, Trends, and Adoption by End-Users. Bioengineering 2022, 9, 101. [Google Scholar] [CrossRef]
- Kim, K.; Lee, W.G. Portable, Automated and Deep-Learning-Enabled Microscopy for Smartphone-Tethered Optical Platform Towards Remote Homecare Diagnostics: A Review. Small Methods 2023, 7, e2200979. [Google Scholar] [CrossRef]
- Garnica, S.; Wieland, R. Secure and Reliable Power Monitoring for Low Consumption Factory Equipment via Programmable IoT Devices. In Proceedings of the 2022 International Symposium on Semiconductor Manufacturing (ISSM), Tokyo, Japan, 12 December 2022; pp. 1–4. [Google Scholar]
- Chiuchisan, I.; Costin, H.-N.; Geman, O. Adopting the Internet of Things Technologies in Health Care Systems. In Proceedings of the 2014 International Conference and Exposition on Electrical and Power Engineering (EPE), Iasi, Romania, 16-18 October 2014; pp. 532–535. [Google Scholar]
- Muhammad, G.; Rahman, S.M.M.; Alelaiwi, A.; Alamri, A. Smart Health Solution Integrating IoT and Cloud: A Case Study of Voice Pathology Monitoring. IEEE Commun. Mag. 2017, 55, 69–73. [Google Scholar] [CrossRef]
- Cai, F.; Wang, T.; Lu, W.; Zhang, X. High-Resolution Mobile Bio-Microscope with Smartphone Telephoto Camera Lens. Optik 2020, 207, 164449. [Google Scholar] [CrossRef]
- Belthangady, C.; Royer, L.A. Applications, Promises, and Pitfalls of Deep Learning for Fluorescence Image Reconstruction. Nat. Methods 2019, 16, 1215–1225. [Google Scholar] [CrossRef]
- von Chamier, L.; Laine, R.F.; Henriques, R. Artificial Intelligence for Microscopy: What You Should Know. Biochem. Soc. Trans. 2019, 47, 1029–1040. [Google Scholar] [CrossRef]
- Vashist, S.K.; Luppa, P.B.; Yeo, L.Y.; Ozcan, A.; Luong, J.H.T. Emerging Technologies for Next-Generation Point-of-Care Testing. Trends Biotechnol. 2015, 33, 692–705. [Google Scholar] [CrossRef]
- McArthur, J. A New Concept in Microscope Design for Tropical Medicine. Am. J. Trop. Med. Hyg. 1958, 7, 382–385. [Google Scholar] [CrossRef]
- Breslauer, D.N.; Maamari, R.N.; Switz, N.A.; Lam, W.A.; Fletcher, D.A. Mobile Phone Based Clinical Microscopy for Global Health Applications. PLoS ONE 2009, 4, e6320. [Google Scholar] [CrossRef]
- Xu, D.; Huang, X.; Guo, J.; Ma, X. Automatic Smartphone-Based Microfluidic Biosensor System at the Point of Care. Biosens. Bioelectron. 2018, 110, 78–88. [Google Scholar] [CrossRef]
- McArthur, J. II.—ADVANCES IN THE DESIGN OF THE INVERTED PRISMATIC MICROSCOPE. J. R. Microsc. Soc. 1945, 65, 8–16. [Google Scholar] [CrossRef]
- McArthur, J.N. XIII-A New Type Of Portable Microscope. J. R. Microsc. Soc. 1934, 54, 182–185. [Google Scholar] [CrossRef]
- Aharoni, D.; Hoogland, T.M. Circuit Investigations with Open-Source Miniaturized Microscopes: Past, Present and Future. Front. Cell. Neurosci. 2019, 13, 141. [Google Scholar] [CrossRef]
- Helmchen, F. Miniaturization of Fluorescence Microscopes Using Fibre Optics. Exp. Physiol. 2002, 87, 737–745. [Google Scholar] [CrossRef]
- Salido, J.; Bueno, G.; Ruiz-Santaquiteria, J.; Cristobal, G. A Review on Low-Cost Microscopes for Open Science. Microsc. Res. Tech. 2022, 85, 3270–3283. [Google Scholar] [CrossRef]
- Boominathan, V.; Robinson, J.T.; Waller, L.; Veeraraghavan, A. Recent Advances in Lensless Imaging. Optica 2022, 9, 1–16. [Google Scholar] [CrossRef]
- Shen, H.; Gao, J. Portable Deep Learning Singlet Microscope. J. Biophotonics. 2020, 13, e202000013. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, S.; Hao, C.; Wang, H.; Zuo, B.; Fan, Z. Conformal Dome Aberration Correction with Gradient Index Optical Elements. Opt. Express 2014, 22, 3514–3525. [Google Scholar] [CrossRef]
- Wang, S.; Wu, P.C.; Su, V.-C.; Lai, Y.-C.; Hung Chu, C.; Chen, J.-W.; Lu, S.-H.; Chen, J.; Xu, B.; Kuan, C.-H.; et al. Broadband Achromatic Optical Metasurface Devices. Nat. Commun. 2017, 8, 187. [Google Scholar] [CrossRef]
- Wang, S.; Wu, P.C.; Su, V.-C.; Lai, Y.-C.; Chen, M.-K.; Kuo, H.Y.; Chen, B.H.; Chen, Y.H.; Huang, T.-T.; Wang, J.-H.; et al. A Broadband Achromatic Metalens in the Visible. Nat. Nanotechnol. 2018, 13, 227–232. [Google Scholar] [CrossRef]
- Fuerschbach, K.; Rolland, J.P.; Thompson, K.P. Theory of Aberration Fields for General Optical Systems with Freeform Surfaces. Opt. Express 2014, 22, 26585. [Google Scholar] [CrossRef]
- Bian, Y.; Jiang, Y.; Huang, Y.; Yang, X.; Deng, W.; Shen, H.; Shen, R.; Kuang, C. Deep Learning Virtual Colorization Overcoming Chromatic Aberrations in Singlet Lens Microscopy. APL Photonics 2021, 6, 031301. [Google Scholar] [CrossRef]
- Gao, J.; Shen, H.; Cui, X.; Zhu, R. Portable Deep Learning Singlet Multi-Spectral Microscope. Opt. Lasers Eng. 2021, 137, 106378. [Google Scholar] [CrossRef]
- Gordon, P.D.; De Ville, C.; Sacchettini, J.C.; Coté, G.L. A Portable Brightfield and Fluorescence Microscope toward Automated Malarial Parasitemia Quantification in Thin Blood Smears. PLoS ONE 2022, 17, e0266441. [Google Scholar] [CrossRef]
- Ozcan, A.; McLeod, E. Lensless Imaging and Sensing. Annu. Rev. Biomed. Eng. 2016, 18, 77–102. [Google Scholar] [CrossRef]
- Dharmawan, A.B.; Mariana, S.; Scholz, G.; Hörmann, P.; Schulze, T.; Triyana, K.; Garcés-Schröder, M.; Rustenbeck, I.; Hiller, K.; Wasisto, H.S.; et al. Nonmechanical Parfocal and Autofocus Features Based on Wave Propagation Distribution in Lensfree Holographic Microscopy. Sci. Rep. 2021, 11, 3213. [Google Scholar] [CrossRef]
- Berdeu, A.; Laperrousaz, B.; Bordy, T.; Mandula, O.; Morales, S.; Gidrol, X.; Picollet-D’hahan, N.; Allier, C. Lens-Free Microscopy for 3D + Time Acquisitions of 3D Cell Culture. Sci. Rep. 2018, 8, 16135. [Google Scholar] [CrossRef]
- Kun, J.; Smieja, M.; Xiong, B.; Soleymani, L.; Fang, Q. The Use of Motion Analysis as Particle Biomarkers in Lensless Optofluidic Projection Imaging for Point of Care Urine Analysis. Sci. Rep. 2019, 9, 17255. [Google Scholar] [CrossRef]
- Rivenson, Y.; Wu, Y.; Wang, H.; Zhang, Y.; Feizi, A.; Ozcan, A. Sparsity-Based Multi-Height Phase Recovery in Holographic Microscopy. Sci. Rep. 2016, 6, 37862. [Google Scholar] [CrossRef]
- Wu, T.; Yang, Y.; Wang, H.; Chen, H.; Zhu, H.; Yu, J.; Wang, X. Investigation of an Improved Angular Spectrum Method Based on Holography. Photonics 2023, 11, 16. [Google Scholar] [CrossRef]
- Niknam, F.; Qazvini, H.; Latifi, H. Holographic Optical Field Recovery Using a Regularized Untrained Deep Decoder Network. Sci. Rep. 2021, 11, 10903. [Google Scholar] [CrossRef]
- Seo, S.; Su, T.-W.; Tseng, D.K.; Erlinger, A.; Ozcan, A. Lensfree Holographic Imaging for On-Chip Cytometry and Diagnostics. Lab A Chip 2009, 9, 777–787. [Google Scholar] [CrossRef]
- Ozcan, A.; Demirci, U. Ultra Wide-Field Lens-Free Monitoring of Cells on-Chip. Lab A Chip 2008, 8, 98–106. [Google Scholar] [CrossRef]
- Coskun, A.F.; Su, T.-W.; Ozcan, A. Wide Field-of-View Lens-Free Fluorescent Imaging on a Chip. Lab A Chip 2010, 10, 824–827. [Google Scholar] [CrossRef]
- Coskun, A.F.; Sencan, I.; Su, T.-W.; Ozcan, A. Lensless Wide-Field Fluorescent Imaging on a Chip Using Compressive Decoding of Sparse Objects. Opt. Express 2010, 18, 10510–10523. [Google Scholar] [CrossRef]
- Wu, J.; Boominathan, V.; Veeraraghavan, A.; Robinson, J.T. Real-Time, Deep-Learning Aided Lensless Microscope. Biomed. Opt. Express 2023, 14, 4037–4051. [Google Scholar] [CrossRef]
- GABOR, D. A New Microscopic Principle. Nature 1948, 161, 777–778. [Google Scholar] [CrossRef]
- Gorocs, Z.; Ozcan, A. On-Chip Biomedical Imaging. IEEE Rev. Biomed. Eng. 2013, 6, 29–46. [Google Scholar] [CrossRef]
- Mudanyali, O.; Tseng, D.; Oh, C.; Isikman, S.O.; Sencan, I.; Bishara, W.; Oztoprak, C.; Seo, S.; Khademhosseini, B.; Ozcan, A. Compact, Light-Weight and Cost-Effective Microscope Based on Lensless Incoherent Holography for Telemedicine Applications. Lab A Chip 2010, 10, 1417–1428. [Google Scholar] [CrossRef]
- Sencan, I. Lensfree Computational Microscopy Tools and Their Biomedical Applications. Ph.D. Thesis, University of California, Los Angeles, CA, USA, 2013. [Google Scholar]
- Liu, D.; Li, Y.; Hussain, A.; Bian, Y.; Kuang, C.; Liu, X. Probe Separation and Noise Suppression in Lensless Microscopy. Appl. Phys. B 2019, 125, 118. [Google Scholar] [CrossRef]
- Bishara, W.; Sikora, U.; Mudanyali, O.; Su, T.-W.; Yaglidere, O.; Luckhart, S.; Ozcan, A. Holographic Pixel Super-Resolution in Portable Lensless on-Chip Microscopy Using a Fiber-Optic Array. Lab A Chip 2011, 11, 1276–1279. [Google Scholar] [CrossRef]
- Luo, W.; Greenbaum, A.; Zhang, Y.; Ozcan, A. Synthetic Aperture-Based on-Chip Microscopy. Light Sci. Appl. 2015, 4, e261. [Google Scholar] [CrossRef]
- Luo, W.; Zhang, Y.; Feizi, A.; Göröcs, Z.; Ozcan, A. Pixel Super-Resolution Using Wavelength Scanning. Light Sci. Appl. 2015, 5, e16060. [Google Scholar] [CrossRef]
- Wu, X.; Sun, J.; Zhang, J.; Lu, L.; Chen, R.; Chen, Q.; Zuo, C. Wavelength-Scanning Lensfree on-Chip Microscopy for Wide-Field Pixel-Super-Resolved Quantitative Phase Imaging. Opt. Lett. 2021, 46, 2023–2026. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, J.; Chen, Q.; Li, J.; Zuo, C. Adaptive Pixel-Super-Resolved Lensfree in-Line Digital Holography for Wide-Field on-Chip Microscopy. Sci. Rep. 2017, 7, 11777. [Google Scholar] [CrossRef]
- Liu, T.; de Haan, K.; Rivenson, Y.; Wei, Z.; Zeng, X.; Zhang, Y.; Ozcan, A. Deep Learning-Based Super-Resolution in Coherent Imaging Systems. Sci. Rep. 2019, 9, 3926. [Google Scholar] [CrossRef]
- Luo, Z.; Yurt, A.; Stahl, R.; Lambrechts, A.; Reumers, V.; Braeken, D.; Lagae, L. Pixel Super-Resolution for Lens-Free Holographic Microscopy Using Deep Learning Neural Networks. Opt. Express 2019, 27, 13581–13595. [Google Scholar] [CrossRef]
- Dangi, A.; Agrawal, S.; Datta, G.R.; Srinivasan, V.; Kothapalli, S.-R. Towards a Low-Cost and Portable Photoacoustic Microscope for Point-of-Care and Wearable Applications. IEEE Sens. J. 2020, 20, 6881–6888. [Google Scholar] [CrossRef]
- Qin, W.; Gan, Q.; Yang, L.; Wang, Y.; Qi, W.; Ke, B.; Xi, L. High-Resolution in Vivo Imaging of Rhesus Cerebral Cortex with Ultrafast Portable Photoacoustic Microscopy. Neuroimage 2021, 238, 118260. [Google Scholar] [CrossRef]
- Seong, M.; Chen, S.-L. Recent Advances toward Clinical Applications of Photoacoustic Microscopy: A Review. Sci. China Life Sci. 2020, 63, 1798–1812. [Google Scholar] [CrossRef]
- Das, D.; Sharma, A.; Rajendran, P.; Pramanik, M. Another Decade of Photoacoustic Imaging. Phys. Med. Biol. 2021, 66, 05TR01. [Google Scholar] [CrossRef]
- Bell, A.G. On the Production and Reproduction of Sound by Light. Am. J. Sci. 1880, 3, 305–324. [Google Scholar] [CrossRef]
- Mirg, S.; Turner, K.L.; Chen, H.; Drew, P.J.; Kothapalli, S. Photoacoustic Imaging for Microcirculation. Microcirculation 2022, 29, e12776. [Google Scholar] [CrossRef]
- Lengenfelder, B. Remote Photoacoustic Sensing Using Speckle-Analysis for Biomedical Imaging. Ph.D. Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, 2023. [Google Scholar]
- Liu, W.; Yao, J. Photoacoustic Microscopy: Principles and Biomedical Applications. Biomed. Eng. Lett. 2018, 8, 203–213. [Google Scholar] [CrossRef]
- Chen, Q.; Jin, T.; Qi, W.; Xi, L. Dual-Model Wearable Photoacoustic Microscopy and Electroencephalograph: Study of Neurovascular Coupling in Anesthetized and Freely Moving Rats. Biomed. Opt. Express 2021, 12, 6614–6628. [Google Scholar] [CrossRef]
- Chen, Q.; Qin, W.; Qi, W.; Xi, L. Progress of Clinical Translation of Handheld and Semi-Handheld Photoacoustic Imaging. Photoacoustics 2021, 22, 100264. [Google Scholar] [CrossRef]
- Guo, H.; Chen, Q.; Qi, W.; Chen, X.; Xi, L. In Vivo Study of Rat Cortical Hemodynamics Using a Stereotaxic-apparatus-compatible Photoacoustic Microscope. J. Biophotonics 2018, 11, e201800067. [Google Scholar] [CrossRef]
- Jin, T.; Guo, H.; Jiang, H.; Ke, B.; Xi, L. Portable Optical Resolution Photoacoustic Microscopy (PORPAM) for Human Oral Imaging. Opt. Lett. 2017, 42, 4434–4437. [Google Scholar] [CrossRef]
- Park, K.; Kim, J.Y.; Lee, C.; Jeon, S.; Lim, G.; Kim, C. Handheld Photoacoustic Microscopy Probe. Sci. Rep. 2017, 7, 13359. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, H.; Cheng, Z.; Wang, Z.; Xiong, K.; Yang, S. High-Speed Dual-View Photoacoustic Imaging Pen. Opt. Lett. 2020, 45, 1599–1602. [Google Scholar] [CrossRef]
- Chen, Q.; Xie, H.; Xi, L. Wearable Optical Resolution Photoacoustic Microscopy. J. Biophotonics 2019, 12, e201900066. [Google Scholar] [CrossRef]
- Lu, C.; Xiong, K.; Ma, Y.; Zhang, W.; Cheng, Z.; Yang, S. Electrothermal-MEMS-Induced Nonlinear Distortion Correction in Photoacoustic Laparoscopy. Opt. Express 2020, 28, 15300–15313. [Google Scholar] [CrossRef]
- Chen, Q.; Guo, H.; Qi, W.; Gan, Q.; Yang, L.; Ke, B.; Chen, X.; Jin, T.; Xi, L. Assessing Hemorrhagic Shock: Feasibility of Using an Ultracompact Photoacoustic Microscope. J. Biophotonics 2019, 12, e201800348. [Google Scholar] [CrossRef]
- Qi, W.; Chen, Q.; Guo, H.; Xie, H.; Xi, L. Miniaturized Optical Resolution Photoacoustic Microscope Based on a Microelectromechanical Systems Scanning Mirror. Micromachines 2018, 9, 288. [Google Scholar] [CrossRef]
- Qin, W.; Chen, Q.; Xi, L. A Handheld Microscope Integrating Photoacoustic Microscopy and Optical Coherence Tomography. Biomed. Opt. Express 2018, 9, 2205–2213. [Google Scholar] [CrossRef]
- Chen, Q.; Guo, H.; Jin, T.; Qi, W.; Xie, H.; Xi, L. Ultracompact High-Resolution Photoacoustic Microscopy. Opt. Lett. 2018, 43, 1615–1618. [Google Scholar] [CrossRef]
- Jin, T.; Guo, H.; Yao, L.; Xie, H.; Jiang, H.; Xi, L. Portable Optical-resolution Photoacoustic Microscopy for Volumetric Imaging of Multiscale Organisms. J. Biophotonics 2018, 11, e201700250. [Google Scholar] [CrossRef]
- Hajireza, P.; Shi, W.; Zemp, R.J. Real-Time Handheld Optical-Resolution Photoacoustic Microscopy. Opt. Express 2011, 19, 20097–20102. [Google Scholar] [CrossRef]
- Zhou, Y.; Xing, W.; Maslov, K.I.; Cornelius, L.A.; Wang, L.V. Handheld Photoacoustic Microscopy to Detect Melanoma Depth in Vivo. Opt. Lett. 2014, 39, 4731–4734. [Google Scholar] [CrossRef]
- Lin, L.; Zhang, P.; Xu, S.; Shi, J.; Li, L.; Yao, J.; Wang, L.; Zou, J.; Wang, L.V. Handheld Optical-Resolution Photoacoustic Microscopy. J. Biomed. Opt. 2016, 22, 041002. [Google Scholar] [CrossRef]
- Kuniyil Ajith Singh, M.; Xia, W. Portable and Affordable Light Source-Based Photoacoustic Tomography. Sensors 2020, 20, 6173. [Google Scholar] [CrossRef]
- Hariri, A.; Fatima, A.; Mohammadian, N.; Mahmoodkalayeh, S.; Ansari, M.A.; Bely, N.; Avanaki, M.R.N. Development of Low-Cost Photoacoustic Imaging Systems Using Very Low-Energy Pulsed Laser Diodes. J. Biomed. Opt. 2017, 22, 075001. [Google Scholar] [CrossRef]
- Hariri, A.; Lemaster, J.; Wang, J.; Jeevarathinam, A.S.; Chao, D.L.; Jokerst, J.V. The Characterization of an Economic and Portable LED-Based Photoacoustic Imaging System to Facilitate Molecular Imaging. Photoacoustics 2018, 9, 10–20. [Google Scholar] [CrossRef]
- Wang, T.; Nandy, S.; Salehi, H.S.; Kumavor, P.D.; Zhu, Q. A Low-Cost Photoacoustic Microscopy System with a Laser Diode Excitation. Biomed. Opt. Express 2014, 5, 3053. [Google Scholar] [CrossRef]
- Yao, J.; Wang, L.; Yang, J.-M.; Gao, L.S.; Maslov, K.I.; Wang, L.V.; Huang, C.-H.; Zou, J. Wide-Field Fast-Scanning Photoacoustic Microscopy Based on a Water-Immersible MEMS Scanning Mirror. J. Biomed. Opt. 2012, 17, 080505. [Google Scholar] [CrossRef]
- Huang, C.-H.; Yao, J.; Wang, L.V.; Zou, J. A Water-Immersible 2-Axis Scanning Mirror Microsystem for Ultrasound Andha Photoacoustic Microscopic Imaging Applications. Microsyst. Technol. 2013, 19, 577–582. [Google Scholar] [CrossRef]
- Qin, W.; Jin, T.; Guo, H.; Xi, L. Large-Field-of-View Optical Resolution Photoacoustic Microscopy. Opt. Express 2018, 26, 4271–4278. [Google Scholar] [CrossRef]
- Qin, W.; Qi, W.; Jin, T.; Guo, H.; Xi, L. In Vivo Oral Imaging with Integrated Portable Photoacoustic Microscopy and Optical Coherence Tomography. Appl. Phys. Lett. 2017, 111, 263704. [Google Scholar] [CrossRef]
- Qi, W.; Jin, T.; Rong, J.; Jiang, H.; Xi, L. Inverted Multiscale Optical Resolution Photoacoustic Microscopy. J. Biophotonics 2017, 10, 1580–1585. [Google Scholar] [CrossRef]
- Callegaro, M.; Manfreda, K.L.; Vehovar, V. Web Survey Methodology; SAGE Publications Ltd.: London, UK, 2015; ISBN 9780857028617. [Google Scholar]
- Chen, W.; Yao, Y.; Chen, T.; Shen, W.; Tang, S.; Lee, H.K. Application of Smartphone-Based Spectroscopy to Biosample Analysis: A Review. Biosens. Bioelectron. 2021, 172, 112788. [Google Scholar] [CrossRef]
- Contreras-Naranjo, J.C.; Wei, Q.; Ozcan, A. Mobile Phone-Based Microscopy, Sensing, and Diagnostics. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 1–14. [Google Scholar] [CrossRef]
- Huang, X.; Xu, D.; Chen, J.; Liu, J.; Li, Y.; Song, J.; Ma, X.; Guo, J. Smartphone-Based Analytical Biosensors. Analyst 2018, 143, 5339–5351. [Google Scholar] [CrossRef]
- Gopinath, S.C.B.; Tang, T.-H.; Chen, Y.; Citartan, M.; Lakshmipriya, T. Bacterial Detection: From Microscope to Smartphone. Biosens. Bioelectron. 2014, 60, 332–342. [Google Scholar] [CrossRef]
- Dendere, R.; Myburg, N.; Douglas, T.S. A Review of Cellphone Microscopy for Disease Detection. J. Microsc. 2015, 260, 248–259. [Google Scholar] [CrossRef]
- Lee, S.A.; Yang, C. A Smartphone-Based Chip-Scale Microscope Using Ambient Illumination. Lab A Chip 2014, 14, 3056–3063. [Google Scholar] [CrossRef]
- Pirnstill, C.W.; Coté, G.L. Malaria Diagnosis Using a Mobile Phone Polarized Microscope. Sci. Rep. 2015, 5, 13368. [Google Scholar] [CrossRef]
- García-Villena, J.; Torres, J.E.; Aguilar, C.; Lin, L.; Bermejo-Peláez, D.; Dacal, E.; Mousa, A.; Ortega, M.D.P.; Martínez, A.; Vladimirov, A.; et al. 3D-Printed Portable Robotic Mobile Microscope for Remote Diagnosis of Global Health Diseases. Electronics 2021, 10, 2408. [Google Scholar] [CrossRef]
- Greenbaum, A.; Luo, W.; Su, T.-W.; Göröcs, Z.; Xue, L.; Isikman, S.O.; Coskun, A.F.; Mudanyali, O.; Ozcan, A. Imaging without Lenses: Achievements and Remaining Challenges of Wide-Field on-Chip Microscopy. Nat. Methods 2012, 9, 889–895. [Google Scholar] [CrossRef]
- Roda, A.; Michelini, E.; Zangheri, M.; Di Fusco, M.; Calabria, D.; Simoni, P. Smartphone-Based Biosensors: A Critical Review and Perspectives. TrAC Trends Anal. Chem. 2016, 79, 317–325. [Google Scholar] [CrossRef]
- Talebian, S.; Javanmard, M. Compact and Automated Particle Counting Platform Using Smartphone-Microscopy. Talanta 2021, 228, 122244. [Google Scholar] [CrossRef]
- Jahan-Tigh, R.R.; Chinn, G.M.; Rapini, R.P. A Comparative Study between Smartphone-Based Microscopy and Conventional Light Microscopy in 1021 Dermatopathology Specimens. Arch. Pathol. Lab. Med. 2016, 140, 86–90. [Google Scholar] [CrossRef]
- de Haan, K.; Ceylan Koydemir, H.; Rivenson, Y.; Tseng, D.; Van Dyne, E.; Bakic, L.; Karinca, D.; Liang, K.; Ilango, M.; Gumustekin, E.; et al. Automated Screening of Sickle Cells Using a Smartphone-Based Microscope and Deep Learning. NPJ Digit. Med. 2020, 3, 76. [Google Scholar] [CrossRef]
- Yu, C.; Li, S.; Wei, C.; Dai, S.; Liang, X.; Li, J. A Cost-Effective Nucleic Acid Detection System Using a Portable Microscopic Device. Micromachines 2022, 13, 869. [Google Scholar] [CrossRef]
- Priye, A.; Bird, S.W.; Light, Y.K.; Ball, C.S.; Negrete, O.A.; Meagher, R.J. A Smartphone-Based Diagnostic Platform for Rapid Detection of Zika, Chikungunya, and Dengue Viruses. Sci. Rep. 2017, 7, 44778. [Google Scholar] [CrossRef]
- Wu, Y.-C.; Shiledar, A.; Li, Y.-C.; Wong, J.; Feng, S.; Chen, X.; Chen, C.; Jin, K.; Janamian, S.; Yang, Z.; et al. Air Quality Monitoring Using Mobile Microscopy and Machine Learning. Light Sci. Appl. 2017, 6, e17046. [Google Scholar] [CrossRef]
- Shin, Y.-H.; Teresa Gutierrez-Wing, M.; Choi, J.-W. Review—Recent Progress in Portable Fluorescence Sensors. J. Electrochem. Soc. 2021, 168, 017502. [Google Scholar] [CrossRef]
- Park, Y.M.; Han, Y.D.; Kim, K.R.; Zhang, C.; Yoon, H.C. An Immunoblot-Based Optical Biosensor for Screening of Osteoarthritis Using a Smartphone-Embedded Illuminometer. Anal. Methods 2015, 7, 6437–6442. [Google Scholar] [CrossRef]
- Navruz, I.; Coskun, A.F.; Wong, J.; Mohammad, S.; Tseng, D.; Nagi, R.; Phillips, S.; Ozcan, A. Smart-Phone Based Computational Microscopy Using Multi-Frame Contact Imaging on a Fiber-Optic Array. Lab A Chip 2013, 13, 4015–4023. [Google Scholar] [CrossRef]
- Gunda, N.S.K.; Gautam, S.H.; Mitra, S.K. Editors’ Choice—Artificial Intelligence Based Mobile Application for Water Quality Monitoring. J. Electrochem. Soc. 2019, 166, B3031–B3035. [Google Scholar] [CrossRef]
- Bornhorst, J.; Nustede, E.; Fudickar, S. Mass Surveilance of C. Elegans—Smartphone-Based DIY Microscope and Machine-Learning-Based Approach for Worm Detection. Sensors 2019, 19, 1468. [Google Scholar] [CrossRef]
- Gallegos, D.; Long, K.D.; Yu, H.; Clark, P.P.; Lin, Y.; George, S.; Nath, P.; Cunningham, B.T. Label-Free Biodetection Using a Smartphone. Lab A Chip 2013, 13, 2124–2132. [Google Scholar] [CrossRef]
- Meng, X.; Huang, H.; Yan, K.; Tian, X.; Yu, W.; Cui, H.; Kong, Y.; Xue, L.; Liu, C.; Wang, S. Smartphone Based Hand-Held Quantitative Phase Microscope Using the Transport of Intensity Equation Method. Lab A Chip 2017, 17, 104–109. [Google Scholar] [CrossRef]
- Müller, V.; Sousa, J.M.; Ceylan Koydemir, H.; Veli, M.; Tseng, D.; Cerqueira, L.; Ozcan, A.; Azevedo, N.F.; Westerlund, F. Identification of Pathogenic Bacteria in Complex Samples Using a Smartphone Based Fluorescence Microscope. RSC Adv. 2018, 8, 36493–36502. [Google Scholar] [CrossRef]
- Sung, Y.; Campa, F.; Shih, W.-C. Open-Source Do-It-Yourself Multi-Color Fluorescence Smartphone Microscopy. Biomed. Opt. Express 2017, 8, 5075. [Google Scholar] [CrossRef]
- Liu, Y.; Rollins, A.M.; Levenson, R.M.; Fereidouni, F.; Jenkins, M.W. Pocket MUSE: An Affordable, Versatile and High-Performance Fluorescence Microscope Using a Smartphone. Commun. Biol. 2021, 4, 334. [Google Scholar] [CrossRef]
- Knowlton, S.; Joshi, A.; Syrrist, P.; Coskun, A.F.; Tasoglu, S. 3D-Printed Smartphone-Based Point of Care Tool for Fluorescence- and Magnetophoresis-Based Cytometry. Lab A Chip 2017, 17, 2839–2851. [Google Scholar] [CrossRef]
- Zhu, H.; Sikora, U.; Ozcan, A. Quantum Dot Enabled Detection of Escherichia Coli Using a Cell-Phone. Analyst 2012, 137, 2541. [Google Scholar] [CrossRef]
- Kim, J.-H.; Joo, H.-G.; Kim, T.-H.; Ju, Y.-G. A Smartphone-Based Fluorescence Microscope Utilizing an External Phone Camera Lens Module. Biochip. J. 2015, 9, 285–292. [Google Scholar] [CrossRef]
- Hunt, B.; Streeter, S.S.; Ruiz, A.J.; Chapman, M.S.; Pogue, B.W. Ultracompact Fluorescence Smartphone Attachment Using Built-in Optics for Protoporphyrin-IX Quantification in Skin. Biomed. Opt. Express 2021, 12, 6995–7008. [Google Scholar] [CrossRef]
- Lee, W.-I.; Shrivastava, S.; Duy, L.-T.; Yeong Kim, B.; Son, Y.-M.; Lee, N.-E. A Smartphone Imaging-Based Label-Free and Dual-Wavelength Fluorescent Biosensor with High Sensitivity and Accuracy. Biosens. Bioelectron. 2017, 94, 643–650. [Google Scholar] [CrossRef]
- Zhu, H.; Yaglidere, O.; Su, T.-W.; Tseng, D.; Ozcan, A. Cost-Effective and Compact Wide-Field Fluorescent Imaging on a Cell-Phone. Lab A Chip 2011, 11, 315–322. [Google Scholar] [CrossRef]
- Yuan, K.; Huang, R.; Gong, K.; Xiao, Z.; Chen, J.; Cai, S.; Shen, J.; Xiong, Z.; Lin, Z. Smartphone-Based Hand-Held Polarized Light Microscope for on-Site Pharmaceutical Crystallinity Characterization. Anal. Bioanal. Chem. 2023, 415, 4401–4410. [Google Scholar] [CrossRef]
- Kim, J.; Go, T.; Lee, S.J. Volumetric Monitoring of Airborne Particulate Matter Concentration Using Smartphone-Based Digital Holographic Microscopy and Deep Learning. J. Hazard. Mater. 2021, 418, 126351. [Google Scholar] [CrossRef]
- Koydemir, H.C.; Gorocs, Z.; Tseng, D.; Cortazar, B.; Feng, S.; Chan, R.Y.L.; Burbano, J.; McLeod, E.; Ozcan, A. Rapid Imaging, Detection and Quantification of Giardia Lamblia Cysts Using Mobile-Phone Based Fluorescent Microscopy and Machine Learning. Lab A Chip 2015, 15, 1284–1293. [Google Scholar] [CrossRef]
- Liu, T.; Wang, W.; Ding, H.; Yi, D. Smartphone-Based Hand-Held Optical Fiber Fluorescence Sensor for On-Site PH Detection. IEEE Sens. J. 2019, 19, 9441–9446. [Google Scholar] [CrossRef]
- Fang, J.; Qiu, X.; Wan, Z.; Zou, Q.; Su, K.; Hu, N.; Wang, P. A Sensing Smartphone and Its Portable Accessory for On-Site Rapid Biochemical Detection of Marine Toxins. Anal. Methods 2016, 8, 6895–6902. [Google Scholar] [CrossRef]
- Dacal, E.; Bermejo-Peláez, D.; Lin, L.; Álamo, E.; Cuadrado, D.; Martínez, Á.; Mousa, A.; Postigo, M.; Soto, A.; Sukosd, E.; et al. Mobile Microscopy and Telemedicine Platform Assisted by Deep Learning for the Quantification of Trichuris Trichiura Infection. PLoS Neglected Trop Dis. 2021, 15, e0009677. [Google Scholar] [CrossRef]
- Kim, K.; Hwang, Y.; Park, J. Multi-Mode Compact Microscopy for High-Contrast and High-Resolution Imaging. Appl. Sci. 2022, 12, 7399. [Google Scholar] [CrossRef]
- Skandarajah, A.; Reber, C.D.; Switz, N.A.; Fletcher, D.A. Quantitative Imaging with a Mobile Phone Microscope. PLoS ONE 2014, 9, e96906. [Google Scholar] [CrossRef]
- Zhu, H.; Sencan, I.; Wong, J.; Dimitrov, S.; Tseng, D.; Nagashima, K.; Ozcan, A. Cost-Effective and Rapid Blood Analysis on a Cell-Phone. Lab A Chip 2013, 13, 1282–1288. [Google Scholar] [CrossRef]
- D’Ambrosio, M.V.; Bakalar, M.; Bennuru, S.; Reber, C.; Skandarajah, A.; Nilsson, L.; Switz, N.; Kamgno, J.; Pion, S.; Boussinesq, M.; et al. Point-of-Care Quantification of Blood-Borne Filarial Parasites with a Mobile Phone Microscope. Sci. Transl. Med. 2015, 7, 286re4. [Google Scholar] [CrossRef]
- Huang, B.; Kang, L.; Tsang, V.T.C.; Lo, C.T.K.; Wong, T.T.W. Deep Learning-Assisted Smartphone-Based Quantitative Microscopy for Label-Free Peripheral Blood Smear Analysis. Biomed. Opt. Express 2024, 15, 2636–2651. [Google Scholar] [CrossRef]
- Ghonge, T.; Ceylan Koydemir, H.; Valera, E.; Berger, J.; Garcia, C.; Nawar, N.; Tiao, J.; Damhorst, G.L.; Ganguli, A.; Hassan, U.; et al. Smartphone-Imaged Microfluidic Biochip for Measuring CD64 Expression from Whole Blood. Analyst 2019, 144, 3925–3935. [Google Scholar] [CrossRef]
- Bills, M.V.; Nguyen, B.T.; Yoon, J.-Y. Simplified White Blood Cell Differential: An Inexpensive, Smartphone- and Paper-Based Blood Cell Count. IEEE Sens. J. 2019, 19, 7822–7828. [Google Scholar] [CrossRef]
- Janev, A.; Kang, J.S.; Park, S.-Y. A Smartphone Integrated Paper (SIP)-Based Platform for Rapid and on-Site Screening of Urinary Tract Infections. Sens. Actuators B Chem. 2023, 382, 133498. [Google Scholar] [CrossRef]
- Mandal, S.; Das, D.; Udutalapally, V. MSickle: Sickle Cell Identification through Gradient Evaluation and Smartphone Microscopy. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 13319–13331. [Google Scholar] [CrossRef]
- Pfeil, J.; Nechyporenko, A.; Frohme, M.; Hufert, F.T.; Schulze, K. Examination of Blood Samples Using Deep Learning and Mobile Microscopy. BMC Bioinform. 2022, 23, 65. [Google Scholar] [CrossRef]
- Hutchison, J.R.; Erikson, R.L.; Sheen, A.M.; Ozanich, R.M.; Kelly, R.T. Reagent-Free and Portable Detection of Bacillus Anthracis Spores Using a Microfluidic Incubator and Smartphone Microscope. Analyst 2015, 140, 6269–6276. [Google Scholar] [CrossRef]
- Yeo, S.-J.; Choi, K.; Cuc, B.T.; Hong, N.N.; Bao, D.T.; Ngoc, N.M.; Le, M.Q.; Hang, N.L.K.; Thach, N.C.; Mallik, S.K.; et al. Smartphone-Based Fluorescent Diagnostic System for Highly Pathogenic H5N1 Viruses. Theranostics 2016, 6, 231–242. [Google Scholar] [CrossRef]
- Wei, Q.; Qi, H.; Luo, W.; Tseng, D.; Ki, S.J.; Wan, Z.; Göröcs, Z.; Bentolila, L.A.; Wu, T.-T.; Sun, R.; et al. Fluorescent Imaging of Single Nanoparticles and Viruses on a Smart Phone. ACS Nano 2013, 7, 9147–9155. [Google Scholar] [CrossRef]
- Chung, S.; Breshears, L.E.; Gonzales, A.; Jennings, C.M.; Morrison, C.M.; Betancourt, W.Q.; Reynolds, K.A.; Yoon, J.-Y. Norovirus Detection in Water Samples at the Level of Single Virus Copies per Microliter Using a Smartphone-Based Fluorescence Microscope. Nat. Protoc. 2021, 16, 1452–1475. [Google Scholar] [CrossRef]
- Liang, Y.; Buchanan, B.C.; Khanthaphixay, B.; Zhou, A.; Quirk, G.; Worobey, M.; Yoon, J.-Y. Sensitive SARS-CoV-2 Salivary Antibody Assays for Clinical Saline Gargle Samples Using Smartphone-Based Competitive Particle Immunoassay Platforms. Biosens. Bioelectron. 2023, 229, 115221. [Google Scholar] [CrossRef]
- Ceylan Koydemir, H.; Feng, S.; Liang, K.; Nadkarni, R.; Benien, P.; Ozcan, A. Comparison of Supervised Machine Learning Algorithms for Waterborne Pathogen Detection Using Mobile Phone Fluorescence Microscopy. Nanophotonics 2017, 6, 731–741. [Google Scholar] [CrossRef]
- Leonard, J.; Koydemir, H.C.; Koutnik, V.S.; Tseng, D.; Ozcan, A.; Mohanty, S.K. Smartphone-Enabled Rapid Quantification of Microplastics. J. Hazard. Mater. Lett. 2022, 3, 100052. [Google Scholar] [CrossRef]
- Li, Y.; Pang, W.; Sun, C.; Zhou, Q.; Lin, Z.; Chang, Y.; Li, Q.; Zhang, M.; Duan, X. Smartphone-Enabled Aerosol Particle Analysis Device. IEEE Access 2019, 7, 101117–101124. [Google Scholar] [CrossRef]
- Carrio, A.; Sampedro, C.; Sanchez-Lopez, J.; Pimienta, M.; Campoy, P. Automated Low-Cost Smartphone-Based Lateral Flow Saliva Test Reader for Drugs-of-Abuse Detection. Sensors 2015, 15, 29569–29593. [Google Scholar] [CrossRef]
- Rateni, G.; Dario, P.; Cavallo, F. Smartphone-Based Food Diagnostic Technologies: A Review. Sensors 2017, 17, 1453. [Google Scholar] [CrossRef]
- Zhao, W.; Tian, S.; Huang, L.; Liu, K.; Dong, L.; Guo, J. A Smartphone-Based Biomedical Sensory System. Analyst 2020, 145, 2873–2891. [Google Scholar] [CrossRef]
- Wicks, L.C.; Cairns, G.S.; Melnyk, J.; Bryce, S.; Duncan, R.R.; Dalgarno, P.A. EnLightenment: High Resolution Smartphone Microscopy as an Educational and Public Engagement Platform. Wellcome Open Res. 2018, 2, 107. [Google Scholar] [CrossRef]
- Kim, H.; Gerber, L.C.; Chiu, D.; Lee, S.A.; Cira, N.J.; Xia, S.Y.; Riedel-Kruse, I.H. LudusScope: Accessible Interactive Smartphone Microscopy for Life-Science Education. PLoS ONE 2016, 11, e0162602. [Google Scholar] [CrossRef]
- Smith, Z.J.; Chu, K.; Espenson, A.R.; Rahimzadeh, M.; Gryshuk, A.; Molinaro, M.; Dwyre, D.M.; Lane, S.; Matthews, D.; Wachsmann-Hogiu, S. Cell-Phone-Based Platform for Biomedical Device Development and Education Applications. PLoS ONE 2011, 6, e17150. [Google Scholar] [CrossRef]
- Schaefer, M.A.; Nelson, H.N.; Butrum, J.L.; Gronseth, J.R.; Hines, J.H. A Low-Cost Smartphone Fluorescence Microscope for Research, Life Science Education, and STEM Outreach. Sci. Rep. 2023, 13, 2722. [Google Scholar] [CrossRef]
- Stemple, C.C.; Angus, S.V.; Park, T.S.; Yoon, J.-Y. Smartphone-Based Optofluidic Lab-on-a-Chip for Detecting Pathogens from Blood. SLAS Technol. 2014, 19, 35–41. [Google Scholar] [CrossRef]
- Rosado, L.; da Costa, J.; Elias, D.; Cardoso, J. Mobile-Based Analysis of Malaria-Infected Thin Blood Smears: Automated Species and Life Cycle Stage Determination. Sensors 2017, 17, 2167. [Google Scholar] [CrossRef]
- Yang, F.; Poostchi, M.; Yu, H.; Zhou, Z.; Silamut, K.; Yu, J.; Maude, R.J.; Jaeger, S.; Antani, S. Deep Learning for Smartphone-Based Malaria Parasite Detection in Thick Blood Smears. IEEE J. Biomed. Health Inform. 2020, 24, 1427–1438. [Google Scholar] [CrossRef]
- Nakasi, R.; Mwebaze, E.; Zawedde, A. Mobile-Aware Deep Learning Algorithms for Malaria Parasites and White Blood Cells Localization in Thick Blood Smears. Algorithms 2021, 14, 17. [Google Scholar] [CrossRef]
- Fuhad, K.M.F.; Tuba, J.F.; Sarker, M.R.A.; Momen, S.; Mohammed, N.; Rahman, T. Deep Learning Based Automatic Malaria Parasite Detection from Blood Smear and Its Smartphone Based Application. Diagnostics 2020, 10, 329. [Google Scholar] [CrossRef]
- Breshears, L.E.; Nguyen, B.T.; Akarapipad, P.; Sosnowski, K.; Kaarj, K.; Quirk, G.; Uhrlaub, J.L.; Nikolich-Žugich, J.; Worobey, M.; Yoon, J.-Y. Sensitive, Smartphone-Based SARS-CoV-2 Detection from Clinical Saline Gargle Samples. PNAS Nexus 2022, 1, pgac028. [Google Scholar] [CrossRef]
- Zhu, W.; Gong, C.; Kulkarni, N.; Nguyen, C.D.; Kang, D. Smartphone-Based Microscopes. In Smartphone Based Medical Diagnostics; Elsevier: Amsterdam, The Netherlands, 2020; pp. 159–175. [Google Scholar]
- Hunt, B.; Ruiz, A.J.; Pogue, B.W. Smartphone-Based Imaging Systems for Medical Applications: A Critical Review. J. Biomed. Opt. 2021, 26, 040902. [Google Scholar] [CrossRef]
- Isikman, S.O.; Bishara, W.; Mudanyali, O.; Sencan, I.; Su, T.-W.; Tseng, D.K.; Yaglidere, O.; Sikora, U.; Ozcan, A. Lensfree On-Chip Microscopy and Tomography for Biomedical Applications. IEEE J. Sel. Top. Quantum Electron. 2012, 18, 1059–1072. [Google Scholar] [CrossRef]
- Alves, J.; Moreira, D.; Alves, P.; Rosado, L.; Vasconcelos, M. Automatic Focus Assessment on Dermoscopic Images Acquired with Smartphones. Sensors 2019, 19, 4957. [Google Scholar] [CrossRef]
- Watanabe, W.; Maruyama, R.; Arimoto, H.; Tamada, Y. Low-Cost Multi-Modal Microscope Using Raspberry Pi. Opt. (Stuttg.) 2020, 212, 164713. [Google Scholar] [CrossRef]
- James, J. The Smart Feature Phone Revolution in Developing Countries: Bringing the Internet to the Bottom of the Pyramid. Inf. Soc. 2020, 36, 226–235. [Google Scholar] [CrossRef]
- Pfeil, J.; Dangelat, L.N.; Frohme, M.; Schulze, K. Smartphone Based Mobile Microscopy for Diagnostics. J. Cell. Biotechnol. 2019, 4, 57–65. [Google Scholar] [CrossRef]
- Hasselbeck, D.; Schäfer, M.B.; Stewart, K.W.; Pott, P.P. Diagnostic Capabilities of a Smartphone- Based Low-Cost Microscope. Curr. Dir. Biomed. Eng. 2020, 6, 522–525. [Google Scholar] [CrossRef]
- Hernández-Neuta, I.; Neumann, F.; Brightmeyer, J.; Ba Tis, T.; Madaboosi, N.; Wei, Q.; Ozcan, A.; Nilsson, M. Smartphone-based Clinical Diagnostics: Towards Democratization of Evidence-based Health Care. J. Intern. Med. 2019, 285, 19–39. [Google Scholar] [CrossRef]
- Wan, X.; Tao, X. Design of a Cell Phone Lens-Based Miniature Microscope with Configurable Magnification Ratio. Appl. Sci. 2021, 11, 3392. [Google Scholar] [CrossRef]
- Sami, M.A.; Tayyab, M.; Parikh, P.; Govindaraju, H.; Hassan, U. A Modular Microscopic Smartphone Attachment for Imaging and Quantification of Multiple Fluorescent Probes Using Machine Learning. Analyst 2021, 146, 2531–2541. [Google Scholar] [CrossRef]
- Orth, A.; Wilson, E.R.; Thompson, J.G.; Gibson, B.C. A Dual-Mode Mobile Phone Microscope Using the Onboard Camera Flash and Ambient Light. Sci. Rep. 2018, 8, 3298. [Google Scholar] [CrossRef]
- Salafi, T.; Zeming, K.K.; Lim, J.W.; Raman, R.; Seah, A.W.R.; Tan, M.P.; Zhang, Y. Portable Smartphone-Based Platform for Real-Time Particle Detection in Microfluidics. Adv. Mater. Technol. 2019, 4, 1800359. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, W.; Zuo, Z.; Yang, J. Towards Ultra-low-cost Smartphone Microscopy. Microsc. Res. Tech. 2024, 87, 1521–1533. [Google Scholar] [CrossRef]
- Vashist, S.K.; Mudanyali, O.; Schneider, E.M.; Zengerle, R.; Ozcan, A. Cellphone-Based Devices for Bioanalytical Sciences. Anal. Bioanal. Chem. 2014, 406, 3263–3277. [Google Scholar] [CrossRef]
- Mavandadi, S.; Dimitrov, S.; Feng, S.; Yu, F.; Sikora, U.; Yaglidere, O.; Padmanabhan, S.; Nielsen, K.; Ozcan, A. Distributed Medical Image Analysis and Diagnosis through Crowd-Sourced Games: A Malaria Case Study. PLoS ONE 2012, 7, e37245. [Google Scholar] [CrossRef]
- Ud Din, I.; Guizani, M.; Hassan, S.; Kim, B.-S.; Khurram Khan, M.; Atiquzzaman, M.; Ahmed, S.H. The Internet of Things: A Review of Enabled Technologies and Future Challenges. IEEE Access 2019, 7, 7606–7640. [Google Scholar] [CrossRef]
- Ud Din, I.; Guizani, M.; Kim, B.-S.; Hassan, S.; Khurram Khan, M. Trust Management Techniques for the Internet of Things: A Survey. IEEE Access 2019, 7, 29763–29787. [Google Scholar] [CrossRef]
- Limaye, A.; Adegbija, T. HERMIT: A Benchmark Suite for the Internet of Medical Things. IEEE Internet Things J. 2018, 5, 4212–4222. [Google Scholar] [CrossRef]
- Aledhari, M.; Razzak, R.; Qolomany, B.; Al-Fuqaha, A.; Saeed, F. Biomedical IoT: Enabling Technologies, Architectural Elements, Challenges, and Future Directions. IEEE Access 2022, 10, 31306–31339. [Google Scholar] [CrossRef]
- Szeremeta, W.K.; Harniman, R.L.; Bermingham, C.R.; Antognozzi, M. Towards a Fully Automated Scanning Probe Microscope for Biomedical Applications. Sensors 2021, 21, 3027. [Google Scholar] [CrossRef]
- Salahuddin, T.; Qidwai, U. A Cloud-Based Solution for Rapid and Smart Neuropathy Detection. In Proceedings of the 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), Doha, Qatar, 2–5 February 2020; pp. 297–301. [Google Scholar]
- Doel, T.; Shakir, D.I.; Pratt, R.; Aertsen, M.; Moggridge, J.; Bellon, E.; David, A.L.; Deprest, J.; Vercauteren, T.; Ourselin, S. GIFT-Cloud: A Data Sharing and Collaboration Platform for Medical Imaging Research. Comput. Methods Programs Biomed. 2017, 139, 181–190. [Google Scholar] [CrossRef]
- Baudin, P.V.; Sacksteder, R.E.; Worthington, A.K.; Voitiuk, K.; Ly, V.T.; Hoffman, R.N.; Elliott, M.A.T.; Parks, D.F.; Ward, R.; Torres-Montoya, S.; et al. Cloud-Controlled Microscopy Enables Remote Project-Based Biology Education in Underserved Latinx Communities. Heliyon 2022, 8, e11596. [Google Scholar] [CrossRef]
- Sampaio, A.F.; Rosado, L.; Vasconcelos, M.J.M. Towards the Mobile Detection of Cervical Lesions: A Region-Based Approach for the Analysis of Microscopic Images. IEEE Access 2021, 9, 152188–152205. [Google Scholar] [CrossRef]
- Wijesinghe, I.; Gamage, C.; Perera, I.; Chitraranjan, C. A Smart Telemedicine System with Deep Learning to Manage Diabetic Retinopathy and Foot Ulcers. In Proceedings of the 2019 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 3–5 July 2019; pp. 686–691. [Google Scholar]
- Karar, M.E.; Alotaibi, B.; Alotaibi, M. Intelligent Medical IoT-Enabled Automated Microscopic Image Diagnosis of Acute Blood Cancers. Sensors 2022, 22, 2348. [Google Scholar] [CrossRef]
- Mencacci, A.; De Socio, G.V.; Pirelli, E.; Bondi, P.; Cenci, E. Laboratory Automation, Informatics, and Artificial Intelligence: Current and Future Perspectives in Clinical Microbiology. Front. Cell. Infect. Microbiol. 2023, 13, 1188684. [Google Scholar] [CrossRef]
- Zamani, N.S.; Mohammed, M.N.; Al-Zubaidi, S.; Yusuf, E. Design and Development of Portable Digital Microscope Platform Using IoT Technology. In Proceedings of the 2020 16th IEEE International Colloquium on Signal Processing & Its Applications (CSPA), Langkawi, Malaysia, 28–29 February 2020; pp. 80–83. [Google Scholar]
- Collins, J.T.; Knapper, J.; McDermott, S.J.; Ayazi, F.; Bumke, K.E.; Stirling, J.; Bowman, R.W. Simplifying the OpenFlexure Microscope Software with the Web of Things. R. Soc. Open Sci. 2021, 8, 211158. [Google Scholar] [CrossRef]
- Munir, T.; Akbar, M.S.; Ahmed, S.; Sarfraz, A.; Sarfraz, Z.; Sarfraz, M.; Felix, M.; Cherrez-Ojeda, I. A Systematic Review of Internet of Things in Clinical Laboratories: Opportunities, Advantages, and Challenges. Sensors 2022, 22, 8051. [Google Scholar] [CrossRef]
- Jemima Jebaseeli, T.; Anand Deva Durai, C.; Dinesh Peter, J. IOT Based Sustainable Diabetic Retinopathy Diagnosis System. Sustain. Comput. Inform. Syst. 2020, 28, 100272. [Google Scholar] [CrossRef]
- Bergier, H.; Duron, L.; Sordet, C.; Kawka, L.; Schlencker, A.; Chasset, F.; Arnaud, L. Digital Health, Big Data and Smart Technologies for the Care of Patients with Systemic Autoimmune Diseases: Where Do We Stand? Autoimmun. Rev. 2021, 20, 102864. [Google Scholar] [CrossRef]
- Rivero-Segura, N.A.; Morales-Rosales, S.L.; Rincón-Heredia, R. Microscopy Principles in the Diagnosis of Epidemic Diseases. In Principles of Genetics and Molecular Epidemiology; Springer International Publishing: Cham, Switzerland, 2022; pp. 87–105. [Google Scholar]
- Alamri, A. Ontology Middleware for Integration of IoT Healthcare Information Systems in EHR Systems. Computers 2018, 7, 51. [Google Scholar] [CrossRef]
- Poger, D.; Yen, L.; Braet, F. Big Data in Contemporary Electron Microscopy: Challenges and Opportunities in Data Transfer, Compute and Management. Histochem. Cell Biol. 2023, 160, 169–192. [Google Scholar] [CrossRef]
- Zuo, J.M.; Zhu, X.R.; Ang, E.; Shah, R. CloudEMAPS: A Cloud Computing Environment for Electron Microscopy Application Simulations. Micros. Today 2021, 29, 24–27. [Google Scholar] [CrossRef]
- Arya, S.; Dwivedi, S.K.; Ansar, S.A.; Sharma, K.; Pandey, D. Integrating IoT with Cloud Computing and Big Data Analytics: Security Perspective. In Proceedings of the AIP Conference Proceedings, Penang, Malaysia, 11–12 November 2022; p. 020002. [Google Scholar]
- Dogra, S.; Yadav, S. What′s New in Nail Disorders? Indian J. Dermatol. Venereol. Leprol. 2011, 77, 631. [Google Scholar] [CrossRef]
- Khan, S.R.; Sikandar, M.; Almogren, A.; Ud Din, I.; Guerrieri, A.; Fortino, G. IoMT-Based Computational Approach for Detecting Brain Tumor. Future Gener. Comput. Syst. 2020, 109, 360–367. [Google Scholar] [CrossRef]
- Kumar, P.M.; Lokesh, S.; Varatharajan, R.; Chandra Babu, G.; Parthasarathy, P. Cloud and IoT Based Disease Prediction and Diagnosis System for Healthcare Using Fuzzy Neural Classifier. Future Gener. Comput. Syst. 2018, 86, 527–534. [Google Scholar] [CrossRef]
- Al-Turjman, F.; Nawaz, M.H.; Ulusar, U.D. Intelligence in the Internet of Medical Things Era: A Systematic Review of Current and Future Trends. Comput. Commun. 2020, 150, 644–660. [Google Scholar] [CrossRef]
- Cinay, D.; Murat, H.A.; Savas, D. Development of IoMT Device for Mobile Eye Examination Via Cloud-Based TeleOphthalmology. In Proceedings of the 2020 21st International Conference on Research and Education in Mechatronics (REM), Cracow, Poland, 9–11 December 9 2020; pp. 1–5. [Google Scholar]
- Ly, V.T.; Baudin, P.V.; Pansodtee, P.; Jung, E.A.; Voitiuk, K.; Rosen, Y.M.; Willsey, H.R.; Mantalas, G.L.; Seiler, S.T.; Selberg, J.A.; et al. Picroscope: Low-Cost System for Simultaneous Longitudinal Biological Imaging. Commun. Biol. 2021, 4, 1261. [Google Scholar] [CrossRef]
- Fenner, B.J.; Wong, R.L.M.; Lam, W.-C.; Tan, G.S.W.; Cheung, G.C.M. Advances in Retinal Imaging and Applications in Diabetic Retinopathy Screening: A Review. Ophthalmol. Ther. 2018, 7, 333–346. [Google Scholar] [CrossRef]
- Maamari, R.N.; Keenan, J.D.; Fletcher, D.A.; Margolis, T.P. A Mobile Phone-Based Retinal Camera for Portable Wide Field Imaging. Br. J. Ophthalmol. 2014, 98, 438–441. [Google Scholar] [CrossRef]
- Rajalakshmi, R.; Subashini, R.; Anjana, R.M.; Mohan, V. Automated Diabetic Retinopathy Detection in Smartphone-Based Fundus Photography Using Artificial Intelligence. Eye 2018, 32, 1138–1144. [Google Scholar] [CrossRef]
- Natarajan, S.; Jain, A.; Krishnan, R.; Rogye, A.; Sivaprasad, S. Diagnostic Accuracy of Community-Based Diabetic Retinopathy Screening with an Offline Artificial Intelligence System on a Smartphone. JAMA Ophthalmol. 2019, 137, 1182–1188. [Google Scholar] [CrossRef]
- Adam, M.K.; Brady, C.J.; Flowers, A.M.; Juhn, A.T.; Hsu, J.; Garg, S.J.; Murchison, A.P.; Spirn, M.J. Quality and Diagnostic Utility of Mydriatic Smartphone Photography: The Smartphone Ophthalmoscopy Reliability Trial. Ophthalmic Surg. Lasers Imaging Retin. 2015, 46, 631–637. [Google Scholar] [CrossRef]
- Ryan, M.E.; Rajalakshmi, R.; Prathiba, V.; Anjana, R.M.; Ranjani, H.; Narayan, K.M.V.; Olsen, T.W.; Mohan, V.; Ward, L.A.; Lynn, M.J.; et al. Comparison Among Methods of Retinopathy Assessment (CAMRA) Study. Ophthalmology 2015, 122, 2038–2043. [Google Scholar] [CrossRef]
- Kavitha, R.J.; Avudaiyappan, T.; Jayasankar, T.; Selvi, J.A.V. Industrial Internet of Things (IIoT) with Cloud Teleophthalmology-Based Age-Related Macular Degeneration (AMD) Disease Prediction Model. In Smart Sensors for Industrial Internet of Things: Challenges, Solutions and Applications; Springer: London, UK, 2021; pp. 161–172. [Google Scholar]
- Das, A.; Rad, P.; Choo, K.-K.R.; Nouhi, B.; Lish, J.; Martel, J. Distributed Machine Learning Cloud Teleophthalmology IoT for Predicting AMD Disease Progression. Future Gener. Comput. Syst. 2019, 93, 486–498. [Google Scholar] [CrossRef]
- Shankar, K.; Perumal, E.; Elhoseny, M.; Thanh Nguyen, P. An IoT-Cloud Based Intelligent Computer-Aided Diagnosis of Diabetic Retinopathy Stage Classification Using Deep Learning Approach. Comput. Mater. Contin. 2021, 66, 1665–1680. [Google Scholar] [CrossRef]
- Muhsen, I.N.; Rasheed, O.W.; Habib, E.A.; Alsaad, R.K.; Maghrabi, M.K.; Rahman, M.A.; Sicker, D.; Wood, W.A.; Beg, M.S.; Sung, A.D.; et al. Current Status and Future Perspectives on the Internet of Things in Oncology. Hematol. Oncol. Stem Cell Ther. 2021, 16, 102–109. [Google Scholar] [CrossRef]
- Skandarajah, A.; Sunny, S.P.; Gurpur, P.; Reber, C.D.; D’Ambrosio, M.V.; Raghavan, N.; James, B.L.; Ramanjinappa, R.D.; Suresh, A.; Kandasarma, U.; et al. Mobile Microscopy as a Screening Tool for Oral Cancer in India: A Pilot Study. PLoS ONE 2017, 12, e0188440. [Google Scholar] [CrossRef]
- Sunny, S.; Baby, A.; James, B.L.; Balaji, D.; V., A.N.; Rana, M.H.; Gurpur, P.; Skandarajah, A.; D’Ambrosio, M.; Ramanjinappa, R.D.; et al. A Smart Tele-Cytology Point-of-Care Platform for Oral Cancer Screening. PLoS ONE 2019, 14, e0224885. [Google Scholar] [CrossRef]
- Peter Soosai Anandaraj, A.; Gomathy, V.; Amali Angel Punitha, A.; Abitha Kumari, D.; Sheeba Rani, S.; Sureshkumar, S. Internet of Medical Things (IoMT) Enabled Skin Lesion Detection and Classification Using Optimal Segmentation and Restricted Boltzmann Machines. In Cognitive Internet of Medical Things for Smart Healthcare: Services and Applications; Springer: London, UK, 2021; pp. 195–209. [Google Scholar]
- Hossen, M.N.; Panneerselvam, V.; Koundal, D.; Ahmed, K.; Bui, F.M.; Ibrahim, S.M. Federated Machine Learning for Detection of Skin Diseases and Enhancement of Internet of Medical Things (IoMT) Security. IEEE J. Biomed. Health Inform. 2023, 27, 835–841. [Google Scholar] [CrossRef]
- Islam, M.K.; Kaushal, C.; Amin, M.A.; Algarni, A.D.; Alturki, N.; Soliman, N.F.; Mansour, R.F. A Secure Framework toward IoMT-Assisted Data Collection, Modeling, and Classification for Intelligent Dermatology Healthcare Services. Contrast Media Mol. Imaging 2022, 2022, 6805460. [Google Scholar] [CrossRef]
- Medi, P.R.; Nemani, P.; Pitta, V.R.; Udutalapally, V.; Das, D.; Mohanty, S.P. SkinAid: A GAN-Based Automatic Skin Lesion Monitoring Method for IoMT Frameworks. In Proceedings of the 2021 19th OITS International Conference on Information Technology (OCIT), Bhubaneswar, India, 16–18 December 2021; pp. 200–205. [Google Scholar]
- Lee, S.H.; Yang, C.S. Fingernail Analysis Management System Using Microscopy Sensor and Blockchain Technology. Int. J. Distrib. Sens. Netw. 2018, 14, 155014771876704. [Google Scholar] [CrossRef]
- Verma, P.; Sood, S.K. Cloud-Centric IoT Based Disease Diagnosis Healthcare Framework. J. Parallel Distrib. Comput. 2018, 116, 27–38. [Google Scholar] [CrossRef]
- Kühnemund, M.; Wei, Q.; Darai, E.; Wang, Y.; Hernández-Neuta, I.; Yang, Z.; Tseng, D.; Ahlford, A.; Mathot, L.; Sjöblom, T.; et al. Targeted DNA Sequencing and in Situ Mutation Analysis Using Mobile Phone Microscopy. Nat. Commun. 2017, 8, 13913. [Google Scholar] [CrossRef]
- Zhao, J.; Jain, M.; Harris, U.G.; Kose, K.; Curiel-Lewandrowski, C.; Kang, D. Deep Learning-Based Denoising in High-Speed Portable Reflectance Confocal Microscopy. Lasers Surg. Med. 2021, 53, 880–891. [Google Scholar] [CrossRef]
- Albuquerque, T.; Rosado, L.; Cruz, R.; Vasconcelos, M.J.M.; Oliveira, T.; Cardoso, J.S. Rethinking Low-Cost Microscopy Workflow: Image Enhancement Using Deep Based Extended Depth of Field Methods. Intell. Syst. Appl. 2023, 17, 200170. [Google Scholar] [CrossRef]
- Rivenson, Y.; Ceylan Koydemir, H.; Wang, H.; Wei, Z.; Ren, Z.; Günaydın, H.; Zhang, Y.; Göröcs, Z.; Liang, K.; Tseng, D.; et al. Deep Learning Enhanced Mobile-Phone Microscopy. ACS Photonics 2018, 5, 2354–2364. [Google Scholar] [CrossRef]
- O’Mahony, N.; Campbell, S.; Carvalho, A.; Harapanahalli, S.; Hernandez, G.V.; Krpalkova, L.; Riordan, D.; Walsh, J. Deep Learning vs. Traditional Computer Vision. In Advances in Computer Vision: Proceedings of the 2019 Computer Vision Conference (CVC); Springer: London, UK, 2020; pp. 128–144. [Google Scholar]
- Kit, C.Y.; Tomari, R.; Wan Zakaria, W.N.; Othman, N.; Mohd Safuan, S.N.; Jie Yi, J.A.; Chun Sheng, N.T. Mobile Based Automated Complete Blood Count (Auto-CBC) Analysis System from Blood Smeared Image. Int. J. Electr. Comput. Eng. (IJECE) 2017, 7, 3020–3029. [Google Scholar] [CrossRef]
- Moravapalle, U.P.; Deshpande, A.; Kapoor, A.; Ramjee, R.; Ravi, P. Blood Count on a Smartphone Microscope: Challenges. In Proceedings of the 18th International Workshop on Mobile Computing Systems and Applications, Sonoma, CA, USA, 21 February 2017; ACM: New York, NY, USA, 2017; pp. 37–42. [Google Scholar]
- Zhao, Z.-Q.; Zheng, P.; Xu, S.-T.; Wu, X. Object Detection with Deep Learning: A Review. IEEE Trans. Neural Netw. Learn Syst. 2019, 30, 3212–3232. [Google Scholar] [CrossRef]
- Xia, T.; Jiang, R.; Fu, Y.Q.; Jin, N. Automated Blood Cell Detection and Counting via Deep Learning for Microfluidic Point-of-Care Medical Devices. IOP Conf. Ser. Mater. Sci. Eng. 2019, 646, 012048. [Google Scholar] [CrossRef]
- Tran, T.; Kwon, O.-H.; Kwon, K.-R.; Lee, S.-H.; Kang, K.-W. Blood Cell Images Segmentation Using Deep Learning Semantic Segmentation. In Proceedings of the 2018 IEEE International Conference on Electronics and Communication Engineering (ICECE), Xi’an, China, 10–12 December 2018; pp. 13–16. [Google Scholar]
- Dhieb, N.; Ghazzai, H.; Besbes, H.; Massoud, Y. An Automated Blood Cells Counting and Classification Framework Using Mask R-CNN Deep Learning Model. In Proceedings of the 2019 31st International Conference on Microelectronics (ICM), Cairo, Egypt, 15–18 December 2019; pp. 300–303. [Google Scholar]
- Fan, H.; Zhang, F.; Xi, L.; Li, Z.; Liu, G.; Xu, Y. LeukocyteMask: An Automated Localization and Segmentation Method for Leukocyte in Blood Smear Images Using Deep Neural Networks. J. Biophotonics 2019, 12, e201800488. [Google Scholar] [CrossRef]
- Rosado, L.; Da Costa, J.M.C.; Elias, D.; Cardoso, J.S. Automated Detection of Malaria Parasites on Thick Blood Smears via Mobile Devices. Procedia Comput. Sci. 2016, 90, 138–144. [Google Scholar] [CrossRef]
- Mosiichuk, V.; Sampaio, A.; Viana, P.; Oliveira, T.; Rosado, L. Improving Mobile-Based Cervical Cytology Screening: A Deep Learning Nucleus-Based Approach for Lesion Detection. Appl. Sci. 2023, 13, 9850. [Google Scholar] [CrossRef]
- Onal, E.G.; Tekgul, H. Assessing Kidney Stone Composition Using Smartphone Microscopy and Deep Neural Networks. BJUI Compass 2022, 3, 310–315. [Google Scholar] [CrossRef]
- Bian, Y.; Jiang, Y.; Huang, Y.; Yang, X.; Deng, W.; Shen, H.; Shen, R.; Kuang, C. Smart-Phone Phase Contrast Microscope with a Singlet Lens and Deep Learning. Opt. Laser Technol. 2021, 139, 106900. [Google Scholar] [CrossRef]
- Ghaderinia, M.; Abadijoo, H.; Mahdavian, A.; Kousha, E.; Shakibi, R.; Taheri, S.M.R.; Simaee, H.; Khatibi, A.; Moosavi-Movahedi, A.A.; Khayamian, M.A. Smartphone-Based Device for Point-of-Care Diagnostics of Pulmonary Inflammation Using Convolutional Neural Networks (CNNs). Sci. Rep. 2024, 14, 6912. [Google Scholar] [CrossRef]
- Jagannadh, V.K.; Srinivasan, R.; Gorthi, S.S. A Semi-Automated, Field-Portable Microscopy Platform for Clinical Diagnostic Applications. AIP Adv. 2015, 5, 084902. [Google Scholar] [CrossRef]
- Wang, B.; Li, Y.; Zhou, M.; Han, Y.; Zhang, M.; Gao, Z.; Liu, Z.; Chen, P.; Du, W.; Zhang, X.; et al. Smartphone-Based Platforms Implementing Microfluidic Detection with Image-Based Artificial Intelligence. Nat. Commun. 2023, 14, 1341. [Google Scholar] [CrossRef]
- Calhoun, K.; Lin, A.; Bryant-Greenwood, P.; Lum, C.; Johnson, D.; Namiki, T. Field Histology: Point-of-Care Microscopic Technique. Arch. Pathol. Lab. Med. 2011, 135, 207–210. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molani, A.; Pennati, F.; Ravazzani, S.; Scarpellini, A.; Storti, F.M.; Vegetali, G.; Paganelli, C.; Aliverti, A. Advances in Portable Optical Microscopy Using Cloud Technologies and Artificial Intelligence for Medical Applications. Sensors 2024, 24, 6682. https://doi.org/10.3390/s24206682
Molani A, Pennati F, Ravazzani S, Scarpellini A, Storti FM, Vegetali G, Paganelli C, Aliverti A. Advances in Portable Optical Microscopy Using Cloud Technologies and Artificial Intelligence for Medical Applications. Sensors. 2024; 24(20):6682. https://doi.org/10.3390/s24206682
Chicago/Turabian StyleMolani, Alessandro, Francesca Pennati, Samuele Ravazzani, Andrea Scarpellini, Federica Maria Storti, Gabriele Vegetali, Chiara Paganelli, and Andrea Aliverti. 2024. "Advances in Portable Optical Microscopy Using Cloud Technologies and Artificial Intelligence for Medical Applications" Sensors 24, no. 20: 6682. https://doi.org/10.3390/s24206682
APA StyleMolani, A., Pennati, F., Ravazzani, S., Scarpellini, A., Storti, F. M., Vegetali, G., Paganelli, C., & Aliverti, A. (2024). Advances in Portable Optical Microscopy Using Cloud Technologies and Artificial Intelligence for Medical Applications. Sensors, 24(20), 6682. https://doi.org/10.3390/s24206682