Recent Methods for Evaluating Crop Water Stress Using AI Techniques: A Review
Abstract
:1. Introduction
2. Materials and Methods
- Examples of crop water stress assessment using RGB imaging;
- Examples of crop water stress assessment using thermal imaging;
- Examples of crop water stress assessment using CWSI;
- Examples of crop water stress assessment using hyperspectral imaging.
- Review articles;
- Assessment of crop water stress with destructive methods;
- No AI learning;
- Crops not under water stress.
3. Remote Sensing
3.1. RGB Imaging
3.2. Thermal Imaging
3.3. CWSI
3.4. Hyperspectral Imaging
4. Artificial Intelligence
4.1. Machine Learning
- Supervised learning is a method of using pairs of input data and corresponding output values to learn a function that allows the system to predict the output for new inputs [119].
- Unsupervised learning is a method of classifying patterns among data by uncovering the hidden structure of input data without an output [120].
- Reinforcement learning is a subfield of machine learning in which software agents learn behaviors that maximize their cumulative reward in the environment [121].
- Reinforcement learning (RL) offers distinct advantages for real-time decision-making and automation in agriculture; its capacity to continuously learn and adapt through interactions with the environment makes it especially effective for dynamic and changing agricultural conditions. Although the use of RL in crop water stress research is currently limited [122], its potential to greatly enhance adaptive management and optimize irrigation strategies suggests that further exploration and experimentation are worthwhile [123,124,125].
4.1.1. Support Vector Machines
4.1.2. Partial Least Squares Regression
4.2. Deep Learning
4.2.1. Artificial Neural Networks
4.2.2. Convolutional Neural Networks
4.3. Ensemble Learning
4.3.1. Extreme Gradient Boosting
4.3.2. Random Forest
5. Case Analysis
5.1. SVM
5.2. PLS
5.3. ANNs
5.4. CNNs
5.5. Ensemble
5.6. Others
6. Latest AI Technologies
6.1. Generative Adversarial Networks
6.2. Explainable AI
7. Conclusions
- The use of remote sensing technologies has demonstrated the potential for non-destructive and precise evaluation of crop water stress. In particular, the use of thermal imaging data has proven effective, and CWSI-based thermal analysis holds significant potential for rapid and accurate water stress assessment.
- Data analysis utilizing machine learning and deep learning models shows high potential for predicting crop water stress. Notably, CNN-based models are expected to achieve excellent performance through RGB and thermal imaging data.
- Ensemble learning techniques combining various models have shown superior prediction performance compared to single models. Ensemble models such as RF and XGBoost can effectively learn complex data patterns and contribute to improved prediction accuracy.
- The research on generating thermal images based on visible-light images using GANs has a high potential for addressing data scarcity issues. Reconstructed thermal images are expected to effectively assess water stress conditions.
- Explainable AI (XAI) contributes to increasing user trust by explaining the decision-making processes of AI models. XAI is useful in interpreting the impact of various variables in water stress assessment and holds promise for future applications.
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Houghton, J.T. The ipcc report 2001. In Proceedings of the The Solar Cycle and Terrestrial Climate, Solar and Space Weather Euroconference (1:2000:Santa Cruz de Tenerife, Tenerife, Spain) Proceedings of the 1st Solar and Space Weather Euroconference, Santa Cruz de Tenerife, Spain, 25–29 September 2000; p. 255. [Google Scholar]
- Kurukulasuriya, P.; Mendelsohn, R.O. How will climate change shift agro-ecological zones and impact African agriculture? World Bank Policy Res. Work. Pap. 2008, 4717. [Google Scholar]
- Knox, J.W.; Díaz, J.A.R.; Nixon, D.J.; Mkhwanazi, M. A preliminary assessment of climate change impacts on sugarcane in Swaziland. Agric. Syst. 2010, 103, 63–72. [Google Scholar] [CrossRef]
- Lafferty, D.C.; Sriver, R.L.; Haqiqi, I.; Hertel, T.W.; Keller, K.; Nicholas, R.E. Statistically bias-corrected and downscaled climate models underestimate the adverse effects of extreme heat on US maize yields. Commun. Earth Environ. 2021, 2, 196. [Google Scholar] [CrossRef]
- Arunrat, N.; Pumijumnong, N.; Sereenonchai, S.; Chareonwong, U.; Wang, C. Assessment of climate change impact on rice yield and water footprint of large-scale and individual farming in Thailand. Sci. Total Environ. 2020, 726, 137864. [Google Scholar] [CrossRef] [PubMed]
- Zare, M.; Azam, S.; Sauchyn, D. Simulation of Climate Change Impacts on Crop Yield in the Saskatchewan Grain Belt Using an Improved SWAT Model. Agriculture 2023, 13, 2102. [Google Scholar] [CrossRef]
- Arunrat, N.; Sereenonchai, S.; Wang, C. Carbon footprint and predicting the impact of climate change on carbon sequestration ecosystem services of organic rice farming and conventional rice farming: A case study in Phichit province, Thailand. J. Environ. Manag. 2021, 289, 112458. [Google Scholar] [CrossRef]
- Guerriero, V.; Scorzini, A.R.; Di Lena, B.; Iulianella, S.; Di Bacco, M.; Tallini, M. Impact of Climate Change on Crop Yields: Insights from the Abruzzo Region, Central Italy. Sustainability 2023, 15, 14235. [Google Scholar] [CrossRef]
- Fereres, E.; Evans, R.G. Irrigation of fruit trees and vines: An introduction. Irrig. Sci. 2006, 24, 55–57. [Google Scholar] [CrossRef]
- Gago, J.; Douthe, C.; Coopman, R.E.; Gallego, P.P.; Ribas-Carbo, M.; Flexas, J.; Escalona, J.; Medrano, H. UAVs challenge to assess water stress for sustainable agriculture. Agric. Water Manag. 2015, 153, 9–19. [Google Scholar] [CrossRef]
- Khan, N.; Ray, R.L.; Sargani, G.R.; Ihtisham, M.; Khayyam, M.; Ismail, S. Current progress and future prospects of agriculture technology: Gateway to sustainable agriculture. Sustainability 2021, 13, 4883. [Google Scholar] [CrossRef]
- González-Dugo, M.P.; Moran, M.S.; Mateos, L.; Bryant, R. Canopy temperature variability as an indicator of crop water stress severity. Irrig. Sci. 2006, 24, 233–240. [Google Scholar] [CrossRef]
- Zhou, Z.; Majeed, Y.; Naranjo, G.D.; Gambacorta, E.M.T. Assessment for crop water stress with infrared thermal imagery in precision agriculture: A review and future prospects for deep learning applications. Comput. Electron. Agric. 2021, 182, 106019. [Google Scholar] [CrossRef]
- Katsoulas, N.; Elvanidi, A.; Ferentinos, K.P.; Kacira, M.; Bartzanas, T.; Kittas, C. Crop reflectance monitoring as a tool for water stress detection in greenhouses: A review. Biosyst. Eng. 2016, 151, 374–398. [Google Scholar] [CrossRef]
- Zhong, L.; Hu, L.; Zhou, H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 2019, 221, 430–443. [Google Scholar] [CrossRef]
- Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing, 5th ed.; Guilford Publications: New York, NY, USA, 2011; ISBN 9781609181772. [Google Scholar]
- Galieni, A.; D’Ascenzo, N.; Stagnari, F.; Pagnani, G.; Xie, Q.; Pisante, M. Past and future of plant stress detection: An overview from remote sensing to positron emission tomography. Front. Plant Sci. 2021, 11, 609155. [Google Scholar] [CrossRef]
- Bregaglio, S.; Frasso, N.; Pagani, V.; Stella, T.; Francone, C.; Cappelli, G.; Acutis, M.; Balaghi, R.; Ouabbou, H.; Paleari, L. New multi-model approach gives good estimations of wheat yield under semi-arid climate in Morocco. Agron. Sustain. Dev. 2015, 35, 157–167. [Google Scholar] [CrossRef]
- Fischer, W.A.; Hemphill, W.R.; Kover, A. Progress in remote sensing (1972–1976). Photogrammetria 1976, 32, 33–72. [Google Scholar] [CrossRef]
- Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent Advances of Hyperspectral Imaging Technology and Applications in Agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Holzman, M.E.; Carmona, F.; Rivas, R.; Niclòs, R. Early assessment of crop yield from remotely sensed water stress and solar radiation data. ISPRS J. Photogramm. Remote Sens. 2018, 145, 297–308. [Google Scholar] [CrossRef]
- Yuan, L.; Bao, Z.; Zhang, H.; Zhang, Y.; Liang, X. Habitat monitoring to evaluate crop disease and pest distributions based on multi-source satellite remote sensing imagery. Optik 2017, 145, 66–73. [Google Scholar] [CrossRef]
- Cetin, M.; Alsenjar, O.; Aksu, H.; Golpinar, M.S.; Akgul, M.A. Estimation of crop water stress index and leaf area index based on remote sensing data. Water Supply 2023, 23, 1390–1404. [Google Scholar] [CrossRef]
- Yao, J.; Wu, J.; Xiao, C.; Zhang, Z.; Li, J. The classification method study of crops remote sensing with deep learning, machine learning, and Google Earth engine. Remote Sens. 2022, 14, 2758. [Google Scholar] [CrossRef]
- Das Suchi, S.; Menon, A.; Malik, A.; Hu, J.; Gao, J. Crop Identification Based on Remote Sensing Data Using Machine Learning Approaches for Fresno County, California. In Proceedings of the 2021 IEEE Seventh International Conference on Big Data Computing Service and Applications (BigDataService), Oxford, UK, 23–26 August 2021; pp. 115–124. [Google Scholar]
- Castaldi, F.; Castrignanò, A.; Casa, R. A data fusion and spatial data analysis approach for the estimation of wheat grain nitrogen uptake from satellite data. Int. J. Remote Sens. 2016, 37, 4317–4336. [Google Scholar] [CrossRef]
- Chakraborty, S.K.; Dubey, K. Embedded System for Automatic Real Time Weight Based Grading of Fruits. In Proceedings of the 2017 International Conference on Recent Innovations in Signal processing and Embedded Systems (RISE), Bhopal, India, 27–29 October 2017; pp. 512–515. [Google Scholar]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Millard, J.P.; Jackson, R.D.; Goettelman, R.C.; Reginato, R.J.; Idso, S.B.; LaPado, R.L. Airborne Monitoring of Crop Canopy Temperatures for Irrigation Scheduling and Yield Prediction. In Proceedings of the International Symposium on Remote Sensing of Environment, Ann Arbor, MI, USA, 25–29 April 1977; pp. 1453–1461. [Google Scholar]
- Jha, K.; Doshi, A.; Patel, P.; Shah, M. A comprehensive review on automation in agriculture using artificial intelligence. Artif. Intell. Agric. 2019, 2, 1–12. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Khan, I.H.; Suman, R. Understanding the potential applications of Artificial Intelligence in Agriculture Sector. Adv. Agrochem. 2023, 2, 15–30. [Google Scholar] [CrossRef]
- Ismail; Budiman, D.; Asri, E.; Aidha, Z.R. The Smart Agriculture based on Reconstructed Thermal Image. In Proceedings of the 2022 2nd International Conference on Intelligent Technologies (CONIT), Hubli, India, 24–26 June 2022; pp. 1–6. [Google Scholar]
- Gerhards, M.; Schlerf, M.; Mallick, K.; Udelhoven, T. Challenges and Future Perspectives of Multi-/Hyperspectral Thermal Infrared Remote Sensing for Crop Water-Stress Detection: A Review. Remote Sens. 2019, 11, 1240. [Google Scholar] [CrossRef]
- Assefa, Y.; Staggenborg, S.A.; Prasad, V.P. V Grain sorghum water requirement and responses to drought stress: A review. Crop Manag. 2010, 9, 1–11. [Google Scholar] [CrossRef]
- Crespo, N.; Pádua, L.; Santos, J.A.; Fraga, H. Satellite Remote Sensing Tools for Drought Assessment in Vineyards and Olive Orchards: A Systematic Review. Remote Sens. 2024, 16, 2040. [Google Scholar] [CrossRef]
- El Bey, N.; Maazoun, A.; Nahdi, O.; Krima, N.B.; Aounallah, M.K. Water stress indicators in citrus, olive and apple trees: A review. J. Appl. Hortic. 2024, 26, 3–9. [Google Scholar] [CrossRef]
- Shi, X.; Han, W.; Zhao, T.; Tang, J. Decision support system for variable rate irrigation based on UAV multispectral remote sensing. Sensors 2019, 19, 2880. [Google Scholar] [CrossRef]
- Martínez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Gumuzzio, A. A soil water based index as a suitable agricultural drought indicator. J. Hydrol. 2015, 522, 265–273. [Google Scholar] [CrossRef]
- Lahoz, I.; Pérez-de-Castro, A.; Valcárcel, M.; Macua, J.I.; Beltrán, J.; Roselló, S.; Cebolla-Cornejo, J. Effect of water deficit on the agronomical performance and quality of processing tomato. Sci. Hortic. 2016, 200, 55–65. [Google Scholar] [CrossRef]
- Alordzinu, K.E.; Li, J.; Lan, Y.; Appiah, S.A.; Al Aasmi, A.; Wang, H. Rapid estimation of crop water stress index on tomato growth. Sensors 2021, 21, 5142. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Stark, B.; Chen, Y.; Ray, A.L.; Doll, D. A detailed field study of direct correlations between ground truth crop water stress and normalized difference vegetation index (NDVI) from small unmanned aerial system (sUAS). In Proceedings of the 2015 International Conference on Unmanned Aircraft Systems (ICUAS), Denver, CO, USA, 9–12 June 2015; pp. 520–525. [Google Scholar]
- Zarco-Tejada, P.J.; González-Dugo, V.; Williams, L.E.; Suarez, L.; Berni, J.A.J.; Goldhamer, D.; Fereres, E. A PRI-based water stress index combining structural and chlorophyll effects: Assessment using diurnal narrow-band airborne imagery and the CWSI thermal index. Remote Sens. Environ. 2013, 138, 38–50. [Google Scholar] [CrossRef]
- Suárez, L.; Zarco-Tejada, P.J.; Berni, J.A.J.; González-Dugo, V.; Fereres, E. Orchard Water Stress detection using high-resolution imagery. In Proceedings of the XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010), International Symposium, Lisbon, Portugal, 22–27 August 2010; pp. 35–39. [Google Scholar]
- Rossini, M.; Fava, F.; Cogliati, S.; Meroni, M.; Marchesi, A.; Panigada, C.; Giardino, C.; Busetto, L.; Migliavacca, M.; Amaducci, S. Assessing canopy PRI from airborne imagery to map water stress in maize. ISPRS J. Photogramm. Remote Sens. 2013, 86, 168–177. [Google Scholar] [CrossRef]
- Panigada, C.; Rossini, M.; Meroni, M.; Cilia, C.; Busetto, L.; Amaducci, S.; Boschetti, M.; Cogliati, S.; Picchi, V.; Pinto, F. Fluorescence, PRI and canopy temperature for water stress detection in cereal crops. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 167–178. [Google Scholar] [CrossRef]
- Leroux, L.; Baron, C.; Zoungrana, B.; Traoré, S.B.; Seen, D.L.; Bégué, A. Crop monitoring using vegetation and thermal indices for yield estimates: Case study of a rainfed cereal in semi-arid West Africa. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 9, 347–362. [Google Scholar] [CrossRef]
- Dangwal, N.; Patel, N.R.; Kumari, M.; Saha, S.K. Monitoring of water stress in wheat using multispectral indices derived from Landsat-TM. Geocarto. Int. 2016, 31, 682–693. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Q.; Huang, D. A review of imaging techniques for plant phenotyping. Sensors 2014, 14, 20078–20111. [Google Scholar] [CrossRef]
- Goldstein, A.; Fink, L.; Meitin, A.; Bohadana, S.; Lutenberg, O.; Ravid, G. Applying machine learning on sensor data for irrigation recommendations: Revealing the agronomist’s tacit knowledge. Precis. Agric. 2018, 19, 421–444. [Google Scholar] [CrossRef]
- Chandel, N.S.; Chakraborty, S.K.; Rajwade, Y.A.; Dubey, K.; Tiwari, M.K.; Jat, D. Identifying crop water stress using deep learning models. Neural Comput. Appl. 2021, 33, 5353–5367. [Google Scholar] [CrossRef]
- Singh, A.K.; Ganapathysubramanian, B.; Sarkar, S.; Singh, A. Deep Learning for Plant Stress Phenotyping: Trends and Future Perspectives. Trends Plant Sci. 2018, 23, 883–898. [Google Scholar] [CrossRef] [PubMed]
- Azimi, S.; Gandhi, T.K. Water Stress Identification in Chickpea Images using Machine Learning. In Proceedings of the 2020 IEEE 8th R10 Humanitarian Technology Conference (R10-HTC), Kuching, Malaysia, 1–3 December 2020; pp. 1–6. [Google Scholar]
- Zhuang, S.; Wang, P.; Jiang, B.; Li, M. Learned features of leaf phenotype to monitor maize water status in the fields. Comput. Electron. Agric. 2020, 172, 105347. [Google Scholar] [CrossRef]
- Wan-Gyu, S.; Jun-Hwan, K.; Jae-Kyeong, B.; Dongwon, K.; Ho-Young, B.; Jung-Il, C.; Myung-Chul, S. Detection of Drought Stress in Soybean Plants using RGB-based Vegetation Indices. Korean J. Agric. For. Meteorol. 2021, 23, 340–348. [Google Scholar] [CrossRef]
- Elsherbiny, O.; Zhou, L.; He, Y.; Qiu, Z. A novel hybrid deep network for diagnosing water status in wheat crop using IoT-based multimodal data. Comput. Electron. Agric. 2022, 203, 107453. [Google Scholar] [CrossRef]
- Chandel, N.S.; Chakraborty, S.K.; Chandel, A.K.; Dubey, K.; Subeesh, A.; Jat, D.; Rajwade, Y.A. State-of-the-art AI-enabled mobile device for real-time water stress detection of field crops. Eng. Appl. Artif. Intell. 2024, 131, 107863. [Google Scholar] [CrossRef]
- Chandel, N.S.; Rajwade, Y.A.; Dubey, K.; Chandel, A.K.; Subeesh, A.; Tiwari, M.K. Water Stress Identification of Winter Wheat Crop with State-of-the-Art AI Techniques and High-Resolution Thermal-RGB Imagery. Plants 2022, 11, 3344. [Google Scholar] [CrossRef]
- Zhang, L.; Niu, Y.; Zhang, H.; Han, W.; Li, G.; Tang, J.; Peng, X. Maize Canopy Temperature Extracted From UAV Thermal and RGB Imagery and Its Application in Water Stress Monitoring. Front. Plant Sci. 2019, 10, 1270. [Google Scholar] [CrossRef]
- Chandel, A.K.; Khot, L.R.; Molaei, B.; Peters, R.T.; Stöckle, C.O.; Jacoby, P.W. High-Resolution Spatiotemporal Water Use Mapping of Surface and Direct-Root-Zone Drip-Irrigated Grapevines Using UAS-Based Thermal and Multispectral Remote Sensing. Remote Sens. 2021, 13, 954. [Google Scholar] [CrossRef]
- Chandel, A.K.; Khot, L.R.; Osroosh, Y.; Peters, T.R. Thermal-RGB imager derived in-field apple surface temperature estimates for sunburn management. Agric. For. Meteorol. 2018, 253–254, 132–140. [Google Scholar] [CrossRef]
- Mazare, A.G.; Ionescu, L.M.; Visan, D.; Lita, A.I.; Serban, G. Embedded System for Real Time Analysis of Thermal Images for Prevention of Water Stress on Plants. In Proceedings of the 2018 41st International Spring Seminar on Electronics Technology (ISSE), Zlatibor, Serbia, 16–20 May 2018; pp. 1–6. [Google Scholar]
- Gutiérrez, S.; Diago, M.P.; Fernández-Novales, J.; Tardaguila, J. Vineyard water status assessment using on-the-go thermal imaging and machine learning. PLoS ONE 2018, 13, e0192037. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Christopher, J.; Apan, A.; Choudhury, M.R.; Chapman, S.; Menzies, N.W.; Dang, Y.P. Evaluation of water status of wheat genotypes to aid prediction of yield on sodic soils using UAV-thermal imaging and machine learning. Agric. For. Meteorol. 2021, 307, 108477. [Google Scholar] [CrossRef]
- Yang, M.; Gao, P.; Zhou, P.; Xie, J.; Sun, D.; Han, X.; Wang, W. Simulating Canopy Temperature Using a Random Forest Model to Calculate the Crop Water Stress Index of Chinese Brassica. Agronomy 2021, 11, 2244. [Google Scholar] [CrossRef]
- Elsherbiny, O.; Zhou, L.; Feng, L.; Qiu, Z. Integration of Visible and Thermal Imagery with an Artificial Neural Network Approach for Robust Forecasting of Canopy Water Content in Rice. Remote Sens. 2021, 13, 1785. [Google Scholar] [CrossRef]
- Carrasco-Benavides, M.; Gonzalez Viejo, C.; Tongson, E.; Baffico-Hernández, A.; Ávila-Sánchez, C.; Mora, M.; Fuentes, S. Water status estimation of cherry trees using infrared thermal imagery coupled with supervised machine learning modeling. Comput. Electron. Agric. 2022, 200, 107256. [Google Scholar] [CrossRef]
- de Melo, L.L.; de Melo, V.G.M.L.; Marques, P.A.A.; Frizzone, J.A.; Coelho, R.D.; Romero, R.A.F.; Barros, T.H.d.S. Deep learning for identification of water deficits in sugarcane based on thermal images. Agric. Water Manag. 2022, 272, 107820. [Google Scholar] [CrossRef]
- Aversano, L.; Bernardi, M.L.; Cimitile, M. Water stress classification using Convolutional Deep Neural Networks. JUCS J. Univers. Comput. Sci. 2022, 28, 311–328. [Google Scholar] [CrossRef]
- Wu, Y.; Jiang, J.; Zhang, X.; Zhang, J.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Combining machine learning algorithm and multi-temporal temperature indices to estimate the water status of rice. Agric. Water Manag. 2023, 289, 108521. [Google Scholar] [CrossRef]
- Jin, K.; Zhang, J.; Wang, Z.; Zhang, J.; Liu, N.; Li, M.; Ma, Z. Application of deep learning based on thermal images to identify the water stress in cotton under film-mulched drip irrigation. Agric. Water Manag. 2024, 299, 108901. [Google Scholar] [CrossRef]
- Wang, J.; Lou, Y.; Wang, W.; Liu, S.; Zhang, H.; Hui, X.; Wang, Y.; Yan, H.; Maes, W.H. A robust model for diagnosing water stress of winter wheat by combining UAV multispectral and thermal remote sensing. Agric. Water Manag. 2024, 291, 108616. [Google Scholar] [CrossRef]
- Sezen, S.M.; Yazar, A.; Eker, S. Effect of drip irrigation regimes on yield and quality of field grown bell pepper. Agric. Water Manag. 2006, 81, 115–131. [Google Scholar] [CrossRef]
- Kırnak, H.; Kaya, C.; Değirmenci, V. Growth and Yield Parameters of Bell Peppers With Surface and Subsurface Drip Irrigation Systems Under Different Irrigation Levels/Toprak Üstü ve Toprak Altı Damla Sulama Sistemlerinde Farklı Sulama Düzeylerinin Biber Bitkisinin Gelişim ve Verim Özellikl. Atatürk Üniv. Ziraat Fak. Derg. 2002, 33, 383–389. [Google Scholar]
- Jackson, R.D.; Idso, S.B.; Reginato, R.J.; Pinter, P.J., Jr. Canopy temperature as a crop water stress indicator. Water Resour. Res. 1981, 17, 1133–1138. [Google Scholar] [CrossRef]
- Idso, S.B.; Jackson, R.D.; Pinter, P.J., Jr.; Reginato, R.J.; Hatfield, J.L. Normalizing the stress-degree-day parameter for environmental variability. Agric. Meteorol. 1981, 24, 45–55. [Google Scholar] [CrossRef]
- Pradhan, A.; Aher, L.; Hegde, V.; Jangid, K.K.; Rane, J. Cooler canopy leverages sorghum adaptation to drought and heat stress. Sci. Rep. 2022, 12, 4603. [Google Scholar] [CrossRef]
- Pinter, P.J.; Zipoli, G.; Reginato, R.J.; Jackson, R.D.; Idso, S.B.; Hohman, J.P. Canopy temperature as an indicator of differential water use and yield performance among wheat cultivars. Agric. Water Manag. 1990, 18, 35–48. [Google Scholar] [CrossRef]
- Cohen, Y.; Alchanatis, V.; Meron, M.; Saranga, Y.; Tsipris, J. Estimation of leaf water potential by thermal imagery and spatial analysis. J. Exp. Bot. 2005, 56, 1843–1852. [Google Scholar] [CrossRef]
- Berni, J.A.J.; Zarco-Tejada, P.J.; Sepulcre-Cantó, G.; Fereres, E.; Villalobos, F. Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery. Remote Sens. Environ. 2009, 113, 2380–2388. [Google Scholar] [CrossRef]
- Garrot, D.J., Jr.; Kilby, M.W.; Stedman, S.W.; Fangmeier, D.D.; Ottman, M.J.; Harper, J.M.; Husman, S.H.; Ray, D.T. Irrigation Scheduling Using the Crop Water Stress Index in Arizona; ASAE Publication: Washington, DC, USA, 1990; pp. 281–286. [Google Scholar]
- Alderfasi, A.A.; Nielsen, D.C. Use of crop water stress index for monitoring water status and scheduling irrigation in wheat. Agric. Water Manag. 2001, 47, 69–75. [Google Scholar] [CrossRef]
- Barnes, E.M.; Pinter, P.J., Jr.; Kimball, B.A.; Hunsaker, D.J.; Wall, G.W.; LaMorte, R.L. Precision irrigation management using modeling and remote sensing approaches. In Proceedings of the Fourth Decennial Symposium, National Irrigation Symposium, Phoenix, AZ, USA, 14–16 November 2000; pp. 332–337. [Google Scholar]
- Jones, H.G. Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agric. For. Meteorol. 1999, 95, 139–149. [Google Scholar] [CrossRef]
- Jackson, R.D.; Kustas, W.P.; Choudhury, B.J. A reexamination of the crop water stress index. Irrig. Sci. 1988, 9, 309–317. [Google Scholar] [CrossRef]
- Hipps, L.E.; Asrar, G.; Kanemasu, E.T. A theoretically-based normalization of environmental effects on foliage temperature. Agric. For. Meteorol. 1985, 35, 113–122. [Google Scholar] [CrossRef]
- King, B.A.; Shellie, K.C.; Tarkalson, D.D.; Levin, A.D.; Sharma, V.; Bjorneberg, D.L. Data-Driven Models for Canopy Temperature-Based Irrigation Scheduling. Trans. ASABE 2020, 63, 1579–1592. [Google Scholar] [CrossRef]
- Cherie Workneh, A.; Hari Prasad, K.S.; Ojha, C.S. Elucidating the prediction capability of neural network model for estimation of crop water stress index of rice. ISH J. Hydraul. Eng. 2023, 29, 92–103. [Google Scholar] [CrossRef]
- Pradawet, C.; Khongdee, N.; Pansak, W.; Spreer, W.; Hilger, T.; Cadisch, G. Thermal imaging for assessment of maize water stress and yield prediction under drought conditions. J. Agron. Crop Sci. 2023, 209, 56–70. [Google Scholar] [CrossRef]
- Katimbo, A.; Rudnick, D.R.; Zhang, J.; Ge, Y.; DeJonge, K.C.; Franz, T.E.; Shi, Y.; Liang, W.; Qiao, X.; Heeren, D.M.; et al. Evaluation of artificial intelligence algorithms with sensor data assimilation in estimating crop evapotranspiration and crop water stress index for irrigation water management. Smart Agric. Technol. 2023, 4, 100176. [Google Scholar] [CrossRef]
- Pei, S.; Dai, Y.; Bai, Z.; Li, Z.; Zhang, F.; Yin, F.; Fan, J. Improved estimation of canopy water status in cotton using vegetation indices along with textural information from UAV-based multispectral images. Comput. Electron. Agric. 2024, 224, 109176. [Google Scholar] [CrossRef]
- Kumar, N.; Shankar, V. Application of artificial intelligence-based modelling for the prediction of crop water stress index. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Chen, H.; Chen, H.; Zhang, S.; Chen, S.; Cen, F.; Zhao, Q.; Huang, X.; He, T.; Gao, Z. Comparison of CWSI and Ts-Ta-VIs in moisture monitoring of dryland crops (sorghum and maize) based on UAV remote sensing. J. Integr. Agric. 2024, 23, 2458–2475. [Google Scholar] [CrossRef]
- Bounoua, I.; Saidi, Y.; Yaagoubi, R.; Bouziani, M. Deep Learning Approaches for Water Stress Forecasting in Arboriculture Using Time Series of Remote Sensing Images: Comparative Study between ConvLSTM and CNN-LSTM Models. Technologies 2024, 12, 77. [Google Scholar] [CrossRef]
- Kapari, M.; Sibanda, M.; Magidi, J.; Mabhaudhi, T.; Nhamo, L.; Mpandeli, S. Comparing Machine Learning Algorithms for Estimating the Maize Crop Water Stress Index (CWSI) Using UAV-Acquired Remotely Sensed Data in Smallholder Croplands. Drones 2024, 8, 61. [Google Scholar] [CrossRef]
- Muni, N.L.; Aditi, Y.; Hitesh, U.; Gopal, D.S. Prediction of Crop Water Stress Index (CWSI) Using Machine Learning Algorithms. World Environ. Water Resour. Congr. 2024, 2024, 969–980. [Google Scholar] [CrossRef]
- Green, R.O.; Eastwood, M.L.; Sarture, C.M.; Chrien, T.G.; Aronsson, M.; Chippendale, B.J.; Faust, J.A.; Pavri, B.E.; Chovit, C.J.; Solis, M.; et al. Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sens. Environ. 1998, 65, 227–248. [Google Scholar] [CrossRef]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef]
- Krishna, G.; Sahoo, R.N.; Singh, P.; Bajpai, V.; Patra, H.; Kumar, S.; Dandapani, R.; Gupta, V.K.; Viswanathan, C.; Ahmad, T.; et al. Comparison of various modelling approaches for water deficit stress monitoring in rice crop through hyperspectral remote sensing. Agric. Water Manag. 2019, 213, 231–244. [Google Scholar] [CrossRef]
- Loggenberg, K.; Strever, A.; Greyling, B.; Poona, N. Modelling water stress in a Shiraz vineyard using hyperspectral imaging and machine learning. Remote Sens. 2018, 10, 202. [Google Scholar] [CrossRef]
- Osco, L.P.; Ramos, A.P.; Moriya, É.A.; Bavaresco, L.G.; Lima, B.C.; Estrabis, N.; Pereira, D.R.; Creste, J.E.; Júnior, J.M.; Gonçalves, W.N.; et al. Modeling Hyperspectral Response of Water-Stress Induced Lettuce Plants Using Artificial Neural Networks. Remote Sens. 2019, 11, 2797. [Google Scholar] [CrossRef]
- Asaari, M.S.M.; Mertens, S.; Dhondt, S.; Inzé, D.; Wuyts, N.; Scheunders, P. Analysis of hyperspectral images for detection of drought stress and recovery in maize plants in a high-throughput phenotyping platform. Comput. Electron. Agric. 2019, 162, 749–758. [Google Scholar] [CrossRef]
- Nasir, R.; Khan, M.J.; Arshad, M.; Khurshid, K. Convolutional Neural Network based Regression for Leaf Water Content Estimation. In Proceedings of the 2019 Second International Conference on Latest trends in Electrical Engineering and Computing Technologies (INTELLECT), Karachi, Pakistan, 13–14 November 2019; pp. 1–5. [Google Scholar]
- Sobejano-Paz, V.; Mikkelsen, T.N.; Baum, A.; Mo, X.; Liu, S.; Köppl, C.J.; Johnson, M.S.; Gulyas, L.; García, M. Hyperspectral and Thermal Sensing of Stomatal Conductance, Transpiration, and Photosynthesis for Soybean and Maize under Drought. Remote Sens. 2020, 12, 3182. [Google Scholar] [CrossRef]
- Sankararao, A.U.G.; Priyanka, G.; Rajalakshmi, P.; Choudhary, S. CNN Based Water Stress Detection in Chickpea Using UAV Based Hyperspectral Imaging. In Proceedings of the 2021 IEEE International India Geoscience and Remote Sensing Symposium (InGARSS), Ahmedabad, India, 6–10 December 2021; pp. 145–148. [Google Scholar]
- Duarte-Carvajalino, J.M.; Silva-Arero, E.A.; Góez-Vinasco, G.A.; Torres-Delgado, L.M.; Ocampo-Paez, O.D.; Castaño-Marín, A.M. Estimation of water stress in potato plants using hyperspectral imagery and machine learning algorithms. Horticulturae 2021, 7, 176. [Google Scholar] [CrossRef]
- Niu, Y.; Han, W.; Zhang, H.; Zhang, L.; Chen, H. Estimating fractional vegetation cover of maize under water stress from UAV multispectral imagery using machine learning algorithms. Comput. Electron. Agric. 2021, 189, 106414. [Google Scholar] [CrossRef]
- Mohite, J.; Sawant, S.; Agarwal, R.; Pandit, A.; Pappula, S. Detection of Crop Water Stress in Maize Using Drone Based Hyperspectral Imaging. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 5957–5960. [Google Scholar]
- Sankararao, A.U.G.; Rajalakshmi, P.; Kaliamoorthy, S.; Choudhary, S. Water Stress Detection in Pearl Millet Canopy with Selected Wavebands using UAV Based Hyperspectral Imaging and Machine Learning. In Proceedings of the 2022 IEEE Sensors Applications Symposium (SAS), Sundsvall, Sweden, 1–3 August 2022; pp. 1–6. [Google Scholar]
- Thapa, S.; Kang, C.; Diverres, G.; Karkee, M.; Zhang, Q.; Keller, M. Assessment of Water Stress in Vineyards Using On-The-Go Hyperspectral Imaging and Machine Learning Algorithms. J. ASABE 2022, 65, 949–962. [Google Scholar] [CrossRef]
- Sankararao, A.U.G.; Rajalakshmi, P.; Choudhary, S. Machine Learning-Based Ensemble Band Selection for Early Water Stress Identification in Groundnut Canopy Using UAV-Based Hyperspectral Imaging. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Mertens, S.; Verbraeken, L.; Sprenger, H.; De Meyer, S.; Demuynck, K.; Cannoot, B.; Merchie, J.; De Block, J.; Vogel, J.T.; Bruce, W.; et al. Monitoring of drought stress and transpiration rate using proximal thermal and hyperspectral imaging in an indoor automated plant phenotyping platform. Plant Methods 2023, 19, 132. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.; Diverres, G.; Achyut, P.; Karkee, M.; Zhang, Q.; Keller, M. Estimating soil and grapevine water status using ground based hyperspectral imaging under diffused lighting conditions: Addressing the effect of lighting variability in vineyards. Comput. Electron. Agric. 2023, 212, 108175. [Google Scholar] [CrossRef]
- Zhuang, T.; Zhang, Y.; Li, D.; Schmidhalter, U.; Ata-UI-Karim, S.T.; Cheng, T.; Liu, X.; Tian, Y.; Zhu, Y.; Cao, W.; et al. Coupling continuous wavelet transform with machine learning to improve water status prediction in winter wheat. Precis. Agric. 2023, 24, 2171–2199. [Google Scholar] [CrossRef]
- Mao, B.; Cheng, Q.; Chen, L.; Duan, F.; Sun, X.; Li, Y.; Li, Z.; Zhai, W.; Ding, F.; Li, H.; et al. Multi-random ensemble on Partial Least Squares regression to predict wheat yield and its losses across water and nitrogen stress with hyperspectral remote sensing. Comput. Electron. Agric. 2024, 222, 109046. [Google Scholar] [CrossRef]
- Malounas, I.; Paliouras, G.; Nikolopoulos, D.; Liakopoulos, G.; Bresta, P.; Londra, P.; Katsileros, A.; Fountas, S. Early detection of broccoli drought acclimation/stress in agricultural environments utilizing proximal hyperspectral imaging and AutoML. Smart Agric. Technol. 2024, 8, 100463. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, H.; She, Y.; Hu, C.; Zhu, T.; Wang, L.; Wu, L.; You, C.; Ke, J.; Zhang, Q.; et al. Improving the prediction performance of leaf water content by coupling multi-source data with machine learning in rice (Oryza sativa L.). Plant Methods 2024, 20, 48. [Google Scholar] [CrossRef]
- El Naqa, I.; Murphy, M.J. What Is Machine Learning? Springer: Berlin/Heidelberg, Germany, 2015; ISBN 3319183044. [Google Scholar]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Cunningham, P.; Cord, M.; Delany, S.J. Supervised Learning. In Machine Learning Techniques for Multimedia: Case Studies on Organization and Retrieval; Springer: Berlin/Heidelberg, Germany, 2008; pp. 21–49. [Google Scholar]
- Ghahramani, Z. Unsupervised Learning. In Summer School on Machine Learning; Springer: Berlin/Heidelberg, Germany, 2003; pp. 72–112. [Google Scholar]
- Wiering, M.A.; Van Otterlo, M. Reinforcement learning. Adapt. Learn. Optim. 2012, 12, 729. [Google Scholar]
- Chen, Y.; Yu, Z.; Han, Z.; Sun, W.; He, L. A Decision-Making System for Cotton Irrigation Based on Reinforcement Learning Strategy. Agronomy 2024, 14, 1–17. [Google Scholar] [CrossRef]
- Homod, R.Z.; Mohammed, H.I.; Abderrahmane, A.; Alawi, O.A.; Khalaf, O.I.; Mahdi, J.M.; Guedri, K.; Dhaidan, N.S.; Albahri, A.S.; Sadeq, A.M.; et al. Deep clustering of Lagrangian trajectory for multi-task learning to energy saving in intelligent buildings using cooperative multi-agent. Appl. Energy 2023, 351, 121843. [Google Scholar] [CrossRef]
- Homod, R.Z.; Munahi, B.S.; Mohammed, H.I.; Albadr, M.A.A.; Abderrahmane, A.; Mahdi, J.M.; Ben Hamida, M.B.; Alhasnawi, B.N.; Albahri, A.S.; Togun, H.; et al. Deep clustering of reinforcement learning based on the bang-bang principle to optimize the energy in multi-boiler for intelligent buildings. Appl. Energy 2024, 356, 122357. [Google Scholar] [CrossRef]
- Homod, R.Z.; Mohammed, H.I.; Ben Hamida, M.B.; Albahri, A.S.; Alhasnawi, B.N.; Albahri, O.S.; Alamoodi, A.H.; Mahdi, J.M.; Albadr, M.A.A.; Yaseen, Z.M. Optimal shifting of peak load in smart buildings using multiagent deep clustering reinforcement learning in multi-tank chilled water systems. J. Energy Storage 2024, 92, 112140. [Google Scholar] [CrossRef]
- Bray, M.; Han, D. Identification of support vector machines for runoff modelling. J. Hydroinformatics 2004, 6, 265–280. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Belousov, A.I.; Verzakov, S.A.; von Frese, J. A flexible classification approach with optimal generalisation performance: Support vector machines. Chemom. Intell. Lab. Syst. 2002, 64, 15–25. [Google Scholar] [CrossRef]
- Kang, J.; Zhang, H.; Yang, H.; Zhang, L. Support Vector Machine Classification of Crop Lands Using Sentinel-2 Imagery. In Proceedings of the 2018 7th International Conference on Agro-geoinformatics (Agro-geoinformatics), Hangzhou, China, 6–9 August 2018; pp. 1–6. [Google Scholar]
- Zheng, B.; Myint, S.W.; Thenkabail, P.S.; Aggarwal, R.M. A support vector machine to identify irrigated crop types using time-series Landsat NDVI data. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 103–112. [Google Scholar] [CrossRef]
- Soumaya, Z.; Drissi Taoufiq, B.; Benayad, N.; Yunus, K.; Abdelkrim, A. The detection of Parkinson disease using the genetic algorithm and SVM classifier. Appl. Acoust. 2021, 171, 107528. [Google Scholar] [CrossRef]
- Usha Kumari, C.; Sampath Dakshina Murthy, A.; Lakshmi Prasanna, B.; Pala Prasad Reddy, M.; Kumar Panigrahy, A. An automated detection of heart arrhythmias using machine learning technique: SVM. Mater. Today Proc. 2021, 45, 1393–1398. [Google Scholar] [CrossRef]
- Fan, M.; Sharma, A. Design and implementation of construction cost prediction model based on svm and lssvm in industries 4.0. Int. J. Intell. Comput. Cybern. 2021, 14, 145–157. [Google Scholar] [CrossRef]
- Tellez Gaytan, J.C.; Ateeq, K.; Rafiuddin, A.; Alzoubi, H.M.; Ghazal, T.M.; Ahanger, T.A.; Chaudhary, S.; Viju, G.K. AI-Based Prediction of Capital Structure: Performance Comparison of ANN SVM and LR Models. Comput. Intell. Neurosci. 2022, 2022, 8334927. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.G.; Hasan, M.R.; Rahman, M.; Protim, J.; Hasan, S.A. Detection of Bangla Fake News using MNB and SVM Classifier. In Proceedings of the 2020 International Conference on Computing, Electronics & Communications Engineering (iCCECE), Southend, UK, 17–18 August 2020; pp. 81–85. [Google Scholar]
- Tripathi, M. Sentiment analysis of nepali covid19 tweets using nb svm and lstm. J. Artif. Intell. 2021, 3, 151–168. [Google Scholar]
- Awad, M. Google Earth Engine (GEE) Cloud Computing Based Crop Classification Using Radar, Optical Images and Support Vector Machine Algorithm (SVM). In Proceedings of the 2021 IEEE 3rd International Multidisciplinary Conference on Engineering Technology (IMCET), Beirut, Lebanon, 8–10 December 2021; pp. 71–76. [Google Scholar]
- Dash, R.; Dash, D.K.; Biswal, G.C. Classification of crop based on macronutrients and weather data using machine learning techniques. Results Eng. 2021, 9, 100203. [Google Scholar] [CrossRef]
- Fegade, T.K.; Pawar, B.V. Crop Prediction Using Artificial Neural Network and Support Vector Machine BT—Data Management, Analytics and Innovation; Sharma, N., Chakrabarti, A., Balas, V.E., Eds.; Springer: Singapore, 2020; pp. 311–324. [Google Scholar]
- Teja, M.S.; Preetham, T.S.; Sujihelen, L.; Christy; Jancy, S.; Selvan, M.P. Crop Recommendation and Yield Production using SVM Algorithm. In Proceedings of the 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 25–27 May 2022; pp. 1768–1771. [Google Scholar]
- Wold, H.O.A. Soft Modelling: The basic Design and Some Extensions. In Systems under Indirect Observations: Part II; Scientific Research Publishing: North-Holland, Amsterdam, 1982; pp. 36–37. [Google Scholar]
- Porker, K.; Coventry, S.; Fettell, N.A.; Cozzolino, D.; Eglinton, J. Using a novel PLS approach for envirotyping of barley phenology and adaptation. F. Crop. Res. 2020, 246, 107697. [Google Scholar] [CrossRef]
- Gefen, D.; Straub, D.; Boudreau, M.-C. Structural equation modeling and regression: Guidelines for research practice. Commun. Assoc. Inf. Syst. 2000, 4, 7. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Albersmeier, F.; Spiller, A. Die reputation der Fleischwirtschaft: Eine Kausalanalyse. Ger. J. Agric. Econ. 2010, 59, 258–270. [Google Scholar]
- Weiber, R.; Mühlhaus, D. Strukturgleichungsmodellierung; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 3642350127. [Google Scholar]
- Lasalvia, M.; Capozzi, V.; Perna, G. A Comparison of PCA-LDA and PLS-DA Techniques for Classification of Vibrational Spectra. Appl. Sci. 2022, 12, 5345. [Google Scholar] [CrossRef]
- Maćkiewicz, A.; Ratajczak, W. Principal components analysis (PCA). Comput. Geosci. 1993, 19, 303–342. [Google Scholar] [CrossRef]
- AlHamad, M.; Akour, I.; Alshurideh, M.; Al-Hamad, A.; Kurdi, B.; Alzoubi, H. Predicting the intention to use google glass: A comparative approach using machine learning models and PLS-SEM. Int. J. Data Netw. Sci. 2021, 5, 311–320. [Google Scholar] [CrossRef]
- Kono, S.; Sato, M. The potentials of partial least squares structural equation modeling (PLS-SEM) in leisure research. J. Leis. Res. 2023, 54, 309–329. [Google Scholar] [CrossRef]
- Hair, J.; Alamer, A. Partial Least Squares Structural Equation Modeling (PLS-SEM) in second language and education research: Guidelines using an applied example. Res. Methods Appl. Linguist. 2022, 1, 100027. [Google Scholar] [CrossRef]
- Sarstedt, M.; Hair, J.F.; Pick, M.; Liengaard, B.D.; Radomir, L.; Ringle, C.M. Progress in partial least squares structural equation modeling use in marketing research in the last decade. Psychol. Mark. 2022, 39, 1035–1064. [Google Scholar] [CrossRef]
- Prihtanti, T.M.; Zebua, N.T. Agricultural extension workers’ perception, usage, and satisfaction in use of internet in the Islands region of South Nias Regency, Indonesia (An Analysis using SEM-PLS Model). World J. Adv. Res. Rev. 2023, 19, 346–362. [Google Scholar] [CrossRef]
- Rübcke von Veltheim, F.; Theuvsen, L.; Heise, H. German farmers’ intention to use autonomous field robots: A PLS-analysis. Precis. Agric. 2022, 23, 670–697. [Google Scholar] [CrossRef]
- Tama, R.A.; Hoque, M.M.; Liu, Y.; Alam, M.J.; Yu, M. An Application of Partial Least Squares Structural Equation Modeling (PLS-SEM) to Examining Farmers’ Behavioral Attitude and Intention towards Conservation Agriculture in Bangladesh. Agriculture 2023, 13, 503. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Netw. 1995, 3361, 1995. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [Google Scholar] [CrossRef]
- Cao, C.; Liu, F.; Tan, H.; Song, D.; Shu, W.; Li, W.; Zhou, Y.; Bo, X.; Xie, Z. Deep learning and its applications in biomedicine. Genom. Proteom. Bioinforma. 2018, 16, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.; Santos, F.N.; Oliveira, P.M.; Shinde, P. Deep Learning Applications in Agriculture: A short review. In Robot 2019: Fourth Iberian Robotics Conference, Proceedings of ROBOT 2019—the Fourth Iberian Robotics Conference, Porto, Portugal, 20–22 November 2019; Springer: Cham, Switzerland, 2020; pp. 139–151. [Google Scholar]
- McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Internal Representations by Error Propagation. In Parallel Distributed Processing, Explorations in the Microstructure of Cognition; Rumelhart, D.E., Mcclelland, J.L., Eds.; MIT Press: Cambridge, MA, USA, 1986; Volume 1. [Google Scholar]
- Zurada, J. Introduction to Artificial Neural Systems; West Publishing Co.: Eagan, MN, USA, 1992; ISBN 0314933913. [Google Scholar]
- Dai, X.; Huo, Z.; Wang, H. Simulation for response of crop yield to soil moisture and salinity with artificial neural network. F. Crop. Res. 2011, 121, 441–449. [Google Scholar] [CrossRef]
- Agatonovic-Kustrin, S.; Beresford, R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 2000, 22, 717–727. [Google Scholar] [CrossRef]
- Palani, S.; Liong, S.-Y.; Tkalich, P. An ANN application for water quality forecasting. Mar. Pollut. Bull. 2008, 56, 1586–1597. [Google Scholar] [CrossRef]
- Hsu, K.; Gupta, H.V.; Sorooshian, S. Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 1995, 31, 2517–2530. [Google Scholar] [CrossRef]
- Zhang, J.-Q.; Zhang, L.-X.; Zhang, M.-H.; Watson, C. Prediction of soybean growth and development using artificial neural network and statistical models. Acta Agron. Sin. 2009, 35, 341–347. [Google Scholar] [CrossRef]
- Khazaei, J.; Naghavi, M.R.; Jahansouz, M.R.; Salimi-Khorshidi, G. Yield estimation and clustering of chickpea genotypes using soft computing techniques. Agron. J. 2008, 100, 1077–1087. [Google Scholar] [CrossRef]
- Liu, X.; Kang, S.; Li, F. Simulation of artificial neural network model for trunk sap flow of Pyrus pyrifolia and its comparison with multiple-linear regression. Agric. Water Manag. 2009, 96, 939–945. [Google Scholar] [CrossRef]
- Jena, P.R.; Majhi, B.; Kalli, R.; Majhi, R. Prediction of crop yield using climate variables in the south-western province of India: A functional artificial neural network modeling (FLANN) approach. Environ. Dev. Sustain. 2023, 25, 11033–11056. [Google Scholar] [CrossRef]
- Poblete, T.; Ortega-Farías, S.; Moreno, M.A.; Bardeen, M. Artificial Neural Network to Predict Vine Water Status Spatial Variability Using Multispectral Information Obtained from an Unmanned Aerial Vehicle (UAV). Sensors 2017, 17, 2488. [Google Scholar] [CrossRef] [PubMed]
- Martí, P.; Gasque, M.; González-Altozano, P. An artificial neural network approach to the estimation of stem water potential from frequency domain reflectometry soil moisture measurements and meteorological data. Comput. Electron. Agric. 2013, 91, 75–86. [Google Scholar] [CrossRef]
- Romero, M.; Luo, Y.; Su, B.; Fuentes, S. Vineyard water status estimation using multispectral imagery from an UAV platform and machine learning algorithms for irrigation scheduling management. Comput. Electron. Agric. 2018, 147, 109–117. [Google Scholar] [CrossRef]
- Fukushima, K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 1980, 36, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Le Cun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Handwritten Digit Recognition with a Back Propagation Network. In Advances in Neural Information Processing Systems 2; AT&T Bell Laboratories: Holmdel, NJ, USA, 1995; pp. 53–60. [Google Scholar]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef]
- Yu, F.; Zhang, Q.; Xiao, J.; Ma, Y.; Wang, M.; Luan, R.; Liu, X.; Ping, Y.; Nie, Y.; Tao, Z.; et al. Progress in the Application of CNN-Based Image Classification and Recognition in Whole Crop Growth Cycles. Remote Sens. 2023, 15, 2988. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Feng, L.; Ma, Y.; Du, Q. A new attention-based CNN approach for crop mapping using time series Sentinel-2 images. Comput. Electron. Agric. 2021, 184, 106090. [Google Scholar] [CrossRef]
- Agarwal, M.; Gupta, S.K.; Biswas, K.K. Development of Efficient CNN model for Tomato crop disease identification. Sustain. Comput. Inform. Syst. 2020, 28, 100407. [Google Scholar] [CrossRef]
- Thakur, P.S.; Sheorey, T.; Ojha, A. VGG-ICNN: A Lightweight CNN model for crop disease identification. Multimed. Tools Appl. 2023, 82, 497–520. [Google Scholar] [CrossRef]
- Peyal, H.I.; Nahiduzzaman, M.; Pramanik, M.A.H.; Syfullah, M.K.; Shahriar, S.M.; Sultana, A.; Ahsan, M.; Haider, J.; Khandakar, A.; Chowdhury, M.E.H. Plant Disease Classifier: Detection of Dual-Crop Diseases Using Lightweight 2D CNN Architecture. IEEE Access 2023, 11, 110627–110643. [Google Scholar] [CrossRef]
- Mehta, S.; Kukreja, V.; Vats, S. Improving Crop Health Management: Federated Learning CNN for Spinach Leaf Disease Detection. In Proceedings of the 2023 3rd International Conference on Intelligent Technologies (CONIT), Hubli, India, 23–25 June 2023; pp. 1–6. [Google Scholar]
- Jiang, H.; Zhang, C.; Qiao, Y.; Zhang, Z.; Zhang, W.; Song, C. CNN feature based graph convolutional network for weed and crop recognition in smart farming. Comput. Electron. Agric. 2020, 174, 105450. [Google Scholar] [CrossRef]
- Mao, M.; Zhao, H.; Tang, G.; Ren, J. In-Season Crop Type Detection by Combing Sentinel-1A and Sentinel-2 Imagery Based on the CNN Model. Agronomy 2023, 13, 1723. [Google Scholar] [CrossRef]
- Nevavuori, P.; Narra, N.; Linna, P.; Lipping, T. Assessment of Crop Yield Prediction Capabilities of CNN Using Multisource Data BT—New Developments and Environmental Applications of Drones; Lipping, T., Linna, P., Narra, N., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 173–186. [Google Scholar]
- Dasarathy, B.V.; Sheela, B.V. A composite classifier system design: Concepts and methodology. Proc. IEEE 1979, 67, 708–713. [Google Scholar] [CrossRef]
- Polikar, R. Ensemble Learning BT—Ensemble Machine Learning: Methods and Applications; Zhang, C., Ma, Y., Eds.; Springer: New York, NY, USA, 2012; pp. 1–34. ISBN 978-1-4419-9326-7. [Google Scholar]
- Huang, F.; Xie, G.; Xiao, R. Research on Ensemble Learning. In Proceedings of the 2009 International Conference on Artificial Intelligence and Computational Intelligence, Shanghai, China, 7–8 November 2009; Volume 3, pp. 249–252. [Google Scholar]
- Sagi, O.; Rokach, L. Ensemble learning: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1249. [Google Scholar] [CrossRef]
- Mohammed, A.; Kora, R. A comprehensive review on ensemble deep learning: Opportunities and challenges. J. King Saud Univ. Comput. Inf. Sci. 2023, 35, 757–774. [Google Scholar] [CrossRef]
- Baradaran Rezaei, H.; Amjadian, A.; Sebt, M.V.; Askari, R.; Gharaei, A. An ensemble method of the machine learning to prognosticate the gastric cancer. Ann. Oper. Res. 2023, 328, 151–192. [Google Scholar] [CrossRef]
- Gaikwad, D.P.; Thool, R.C. Intrusion Detection System Using Bagging Ensemble Method of Machine Learning. In Proceedings of the 2015 International Conference on Computing Communication Control and Automation, Pune, India, 26–27 February 2015; pp. 291–295. [Google Scholar]
- Mohammed, A.; Kora, R. An effective ensemble deep learning framework for text classification. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 8825–8837. [Google Scholar] [CrossRef]
- Xiao, Y.; Wu, J.; Lin, Z.; Zhao, X. A deep learning-based multi-model ensemble method for cancer prediction. Comput. Methods Programs Biomed. 2018, 153, 1–9. [Google Scholar] [CrossRef]
- Ahmad, I.; Yousaf, M.; Yousaf, S.; Ahmad, M.O. Fake news detection using machine learning ensemble methods. Complexity 2020, 2020, 8885861. [Google Scholar] [CrossRef]
- Chakir, O.; Rehaimi, A.; Sadqi, Y.; Krichen, M.; Gaba, G.S.; Gurtov, A. An empirical assessment of ensemble methods and traditional machine learning techniques for web-based attack detection in industry 5.0. J. King Saud Univ. Inf. Sci. 2023, 35, 103–119. [Google Scholar] [CrossRef]
- Lin, C.; Xu, J.; Hou, J.; Liang, Y.; Mei, X. Ensemble method with heterogeneous models for battery state-of-health estimation. IEEE Trans. Ind. Inform. 2023, 19, 10160–10169. [Google Scholar] [CrossRef]
- Kisi, O.; Alizamir, M.; Docheshmeh Gorgij, A. Dissolved oxygen prediction using a new ensemble method. Environ. Sci. Pollut. Res. 2020, 27, 9589–9603. [Google Scholar] [CrossRef] [PubMed]
- Talukder, M.S.H.; Sarkar, A.K. Nutrients deficiency diagnosis of rice crop by weighted average ensemble learning. Smart Agric. Technol. 2023, 4, 100155. [Google Scholar] [CrossRef]
- Iniyan, S.; Jebakumar, R. Mutual Information Feature Selection (MIFS) Based Crop Yield Prediction on Corn and Soybean Crops Using Multilayer Stacked Ensemble Regression (MSER). Wirel. Pers. Commun. 2022, 126, 1935–1964. [Google Scholar] [CrossRef]
- Kasinathan, T.; Uyyala, S.R. Machine learning ensemble with image processing for pest identification and classification in field crops. Neural Comput. Appl. 2021, 33, 7491–7504. [Google Scholar] [CrossRef]
- Chaudhary, A.; Thakur, R.; Kolhe, S.; Kamal, R. A particle swarm optimization based ensemble for vegetable crop disease recognition. Comput. Electron. Agric. 2020, 178, 105747. [Google Scholar] [CrossRef]
- Saini, R.; Ghosh, S.K. Crop classification in a heterogeneous agricultural environment using ensemble classifiers and single-date Sentinel-2A imagery. Geocarto Int. 2021, 36, 2141–2159. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Ramraj, S.; Uzir, N.; Sunil, R.; Banerjee, S. Experimenting XGBoost algorithm for prediction and classification of different datasets. Int. J. Control Theory Appl. 2016, 9, 651–662. [Google Scholar]
- Ogunleye, A.; Wang, Q.-G. XGBoost Model for Chronic Kidney Disease Diagnosis. IEEE/ACM Trans. Comput. Biol. Bioinforma. 2020, 17, 2131–2140. [Google Scholar] [CrossRef] [PubMed]
- Dhaliwal, S.S.; Nahid, A.-A.; Abbas, R. Effective Intrusion Detection System Using XGBoost. Information 2018, 9, 149. [Google Scholar] [CrossRef]
- Li, Y.; Zeng, H.; Zhang, M.; Wu, B.; Zhao, Y.; Yao, X.; Cheng, T.; Qin, X.; Wu, F. A county-level soybean yield prediction framework coupled with XGBoost and multidimensional feature engineering. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103269. [Google Scholar] [CrossRef]
- Mallikarjuna Rao, G.S.; Dangeti, S.; Amiripalli, S.S. An Efficient Modeling Based on XGBoost and SVM Algorithms to Predict Crop Yield BT—Advances in Data Science and Management; Borah, S., Mishra, S.K., Mishra, B.K., Balas, V.E., Polkowski, Z., Eds.; Springer Nature Singapore: Singapore, 2022; pp. 565–574. [Google Scholar]
- Mariadass, D.A.-L.; Moung, E.G.; Sufian, M.M.; Farzamnia, A. Extreme Gradient Boosting (XGBoost) Regressor and Shapley Additive Explanation for Crop Yield Prediction in Agriculture. In Proceedings of the 2022 12th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 17–18 November 2022; pp. 219–224. [Google Scholar]
- Ge, J.; Zhao, L.; Yu, Z.; Liu, H.; Zhang, L.; Gong, X.; Sun, H. Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model. Plants 2022, 11, 1923. [Google Scholar] [CrossRef]
- Nagaraju, A.; Reddy, M.A.K.; Reddy, C.V.; Mohandas, R. Multifactor Analysis to Predict Best Crop using Xg-Boost Algorithm. In Proceedings of the 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 3–5 June 2021; pp. 155–163. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Shi, T.; Horvath, S. Unsupervised Learning With Random Forest Predictors. J. Comput. Graph. Stat. 2006, 15, 118–138. [Google Scholar] [CrossRef]
- Biau, G. Analysis of a random forests model. J. Mach. Learn. Res. 2012, 13, 1063–1095. [Google Scholar]
- Rigatti, S.J. Random forest. J. Insur. Med. 2017, 47, 31–39. [Google Scholar] [CrossRef]
- Ok, A.O.; Akar, O.; Gungor, O. Evaluation of random forest method for agricultural crop classification. Eur. J. Remote Sens. 2012, 45, 421–432. [Google Scholar] [CrossRef]
- Tatsumi, K.; Yamashiki, Y.; Canales Torres, M.A.; Taipe, C.L.R. Crop classification of upland fields using Random forest of time-series Landsat 7 ETM+ data. Comput. Electron. Agric. 2015, 115, 171–179. [Google Scholar] [CrossRef]
- Prasad, N.R.; Patel, N.R.; Danodia, A. Crop yield prediction in cotton for regional level using random forest approach. Spat. Inf. Res. 2021, 29, 195–206. [Google Scholar] [CrossRef]
- Geetha, V.; Punitha, A.; Abarna, M.; Akshaya, M.; Illakiya, S.; Janani, A.P. An Effective Crop Prediction Using Random Forest Algorithm. In Proceedings of the 2020 International Conference on System, Computation, Automation and Networking (ICSCAN), Pondicherry, India, 3–4 July 2020; pp. 1–5. [Google Scholar]
- Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using deep learning for image-based plant disease detection. Front. Plant Sci. 2016, 7, 1419. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhang, Y.; He, D.; Li, Y. Identification of apple leaf diseases based on deep convolutional neural networks. Symmetry 2017, 10, 11. [Google Scholar] [CrossRef]
- Fuentes, A.; Yoon, S.; Kim, S.C.; Park, D.S. A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors 2017, 17, 2022. [Google Scholar] [CrossRef] [PubMed]
- Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 2018, 145, 311–318. [Google Scholar] [CrossRef]
- Dyrmann, M.; Karstoft, H.; Midtiby, H.S. Plant species classification using deep convolutional neural network. Biosyst. Eng. 2016, 151, 72–80. [Google Scholar] [CrossRef]
- Cruz, A.C.; Luvisi, A.; De Bellis, L.; Ampatzidis, Y. X-FIDO: An effective application for detecting olive quick decline syndrome with deep learning and data fusion. Front. Plant Sci. 2017, 8, 1741. [Google Scholar] [CrossRef] [PubMed]
- Barbedo, J.G.A. Plant disease identification from individual lesions and spots using deep learning. Biosyst. Eng. 2019, 180, 96–107. [Google Scholar] [CrossRef]
- Zheng, Y.-Y.; Kong, J.-L.; Jin, X.-B.; Wang, X.-Y.; Su, T.-L.; Zuo, M. CropDeep: The crop vision dataset for deep-learning-based classification and detection in precision agriculture. Sensors 2019, 19, 1058. [Google Scholar] [CrossRef]
- Wang, G.; Sun, Y.; Wang, J. Automatic image-based plant disease severity estimation using deep learning. Comput. Intell. Neurosci. 2017, 2017, 2917536. [Google Scholar] [CrossRef]
- Too, E.C.; Yujian, L.; Njuki, S.; Yingchun, L. A comparative study of fine-tuning deep learning models for plant disease identification. Comput. Electron. Agric. 2019, 161, 272–279. [Google Scholar] [CrossRef]
- Suh, H.K.; Ijsselmuiden, J.; Hofstee, J.W.; van Henten, E.J. Transfer learning for the classification of sugar beet and volunteer potato under field conditions. Biosyst. Eng. 2018, 174, 50–65. [Google Scholar] [CrossRef]
- Olsen, A.; Konovalov, D.A.; Philippa, B.; Ridd, P.; Wood, J.C.; Johns, J.; Banks, W.; Girgenti, B.; Kenny, O.; Whinney, J. DeepWeeds: A multiclass weed species image dataset for deep learning. Sci. Rep. 2019, 9, 2058. [Google Scholar] [CrossRef]
- Ghazi, M.M.; Yanikoglu, B.; Aptoula, E. Plant identification using deep neural networks via optimization of transfer learning parameters. Neurocomputing 2017, 235, 228–235. [Google Scholar] [CrossRef]
- Espejo-Garcia, B.; Mylonas, N.; Athanasakos, L.; Fountas, S.; Vasilakoglou, I. Towards weeds identification assistance through transfer learning. Comput. Electron. Agric. 2020, 171, 105306. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. arXiv 2014, arXiv:1406.2661. [Google Scholar]
- Frid-Adar, M.; Diamant, I.; Klang, E.; Amitai, M.; Goldberger, J.; Greenspan, H. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 2018, 321, 321–331. [Google Scholar] [CrossRef]
- Bowles, C.; Chen, L.; Guerrero, R.; Bentley, P.; Gunn, R.; Hammers, A.; Dickie, D.A.; Hernández, M.V.; Wardlaw, J.; Rueckert, D. Gan augmentation: Augmenting training data using generative adversarial networks. arXiv 2018, arXiv:1810.10863. [Google Scholar]
- Perez, L.; Wang, J. The effectiveness of data augmentation in image classification using deep learning. arXiv 2017, arXiv:1712.04621. [Google Scholar]
- Gong, X.; Chang, S.; Jiang, Y.; Wang, Z. Autogan: Neural Architecture Search for Generative Adversarial Networks. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3224–3234. [Google Scholar]
- Brock, A.; Donahue, J.; Simonyan, K. Large scale GAN training for high fidelity natural image synthesis. arXiv 2018, arXiv:1809.11096. [Google Scholar]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv 2015, arXiv:1511.06434. [Google Scholar]
- Arjovsky, M.; Bottou, L. Towards principled methods for training generative adversarial networks. arXiv 2017, arXiv:1701.04862. [Google Scholar]
- Kurach, K.; Lučić, M.; Zhai, X.; Michalski, M.; Gelly, S. A large-Scale Study on Regularization and Normalization in GANs. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 3581–3590. [Google Scholar]
- Lucic, M.; Kurach, K.; Michalski, M.; Gelly, S.; Bousquet, O. Are gans created equal? a large-scale study. arXiv 2018, arXiv:1711.10337. [Google Scholar]
- Aggarwal, A.; Mittal, M.; Battineni, G. Generative adversarial network: An overview of theory and applications. Int. J. Inf. Manag. Data Insights 2021, 1, 100004. [Google Scholar] [CrossRef]
- Shumilo, L.; Okhrimenko, A.; Kussul, N.; Drozd, S.; Shkalikov, O. Generative adversarial network augmentation for solving the training data imbalance problem in crop classification. Remote Sens. Lett. 2023, 14, 1129–1138. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Z.; Liu, J. Limited agricultural spectral dataset expansion based on generative adversarial networks. Comput. Electron. Agric. 2023, 215, 108385. [Google Scholar] [CrossRef]
- Akkem, Y.; Biswas, S.K.; Varanasi, A. A comprehensive review of synthetic data generation in smart farming by using variational autoencoder and generative adversarial network. Eng. Appl. Artif. Intell. 2024, 131, 107881. [Google Scholar] [CrossRef]
- Douarre, C.; Crispim-Junior, C.F.; Gelibert, A.; Tougne, L.; Rousseau, D. Novel data augmentation strategies to boost supervised segmentation of plant disease. Comput. Electron. Agric. 2019, 165, 104967. [Google Scholar] [CrossRef]
- Fawakherji, M.; Potena, C.; Pretto, A.; Bloisi, D.D.; Nardi, D. Multi-spectral image synthesis for crop/weed segmentation in precision farming. Rob. Auton. Syst. 2021, 146, 103861. [Google Scholar] [CrossRef]
- Luo, Z.; Yu, H.; Zhang, Y. Pine cone detection using boundary equilibrium generative adversarial networks and improved YOLOv3 model. Sensors 2020, 20, 4430. [Google Scholar] [CrossRef]
- Valerio Giuffrida, M.; Scharr, H.; Tsaftaris, S.A. Arigan: Synthetic Arabidopsis Plants Using Generative Adversarial Network. In Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops, Venice, Italy, 22–29 October 2017; pp. 2064–2071. [Google Scholar]
- Chou, Y.-C.; Kuo, C.-J.; Chen, T.-T.; Horng, G.-J.; Pai, M.-Y.; Wu, M.-E.; Lin, Y.-C.; Hung, M.-H.; Su, W.-T.; Chen, Y.-C. Deep-learning-based defective bean inspection with GAN-structured automated labeled data augmentation in coffee industry. Appl. Sci. 2019, 9, 4166. [Google Scholar] [CrossRef]
- Gunning, D.; Aha, D. DARPA’s explainable artificial intelligence (XAI) program. AI Mag. 2019, 40, 44–58. [Google Scholar]
- Carvalho, D.V.; Pereira, E.M.; Cardoso, J.S. Machine learning interpretability: A survey on methods and metrics. Electronics 2019, 8, 832. [Google Scholar] [CrossRef]
- Shams, M.Y.; Gamel, S.A.; Talaat, F.M. Enhancing crop recommendation systems with explainable artificial intelligence: A study on agricultural decision-making. Neural Comput. Appl. 2024, 36, 5695–5714. [Google Scholar] [CrossRef]
- Ryo, M.; Angelov, B.; Mammola, S.; Kass, J.M.; Benito, B.M.; Hartig, F. Explainable artificial intelligence enhances the ecological interpretability of black-box species distribution models. Ecography 2021, 44, 199–205. [Google Scholar] [CrossRef]
- Murdoch, W.J.; Singh, C.; Kumbier, K.; Abbasi-Asl, R.; Yu, B. Definitions, methods, and applications in interpretable machine learning. Proc. Natl. Acad. Sci. USA 2019, 116, 22071–22080. [Google Scholar] [CrossRef]
- Molnar, C. Interpretable Machine Learning; Lulu Press: Morrisville, NC, USA, 2020; ISBN 0244768528. [Google Scholar]
- Boehmke, B.; Greenwell, B.M. Hands-On Machine Learning with R.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2019; ISBN 0367816377. [Google Scholar]
- Duval, A. Explainable Artificial Intelligence (XAI). Master’s Thesis, The University of Warwick, Coventry, UK, 2019. [Google Scholar]
- Speith, T.; Langer, M. A New Perspective on Evaluation Methods for Explainable Artificial Intelligence (XAI). In Proceedings of the 2023 IEEE 31st International Requirements Engineering Conference Workshops (REW), Hannover, Germany, 4–5 September 2023; pp. 325–331. [Google Scholar]
- Ryo, M. Explainable artificial intelligence and interpretable machine learning for agricultural data analysis. Artif. Intell. Agric. 2022, 6, 257–265. [Google Scholar] [CrossRef]
- Hu, T.; Zhang, X.; Bohrer, G.; Liu, Y.; Zhou, Y.; Martin, J.; Li, Y.; Zhao, K. Crop yield prediction via explainable AI and interpretable machine learning: Dangers of black box models for evaluating climate change impacts on crop yield. Agric. For. Meteorol. 2023, 336, 109458. [Google Scholar] [CrossRef]
- Mehedi, M.H.K.; Hosain, A.K.M.S.; Ahmed, S.; Promita, S.T.; Muna, R.K.; Hasan, M.; Reza, M.T. Plant Leaf Disease Detection using Transfer Learning and Explainable AI. In Proceedings of the 2022 IEEE 13th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 12–15 October 2022; pp. 166–170. [Google Scholar]
- Sowmiyan, L.; Vaidya, S.; Karpagam, G.R. An Explainable AI (XAI)-Based Framework for Detecting Diseases in Paddy Crops BT—Data Science and Applications; Nanda, S.J., Yadav, R.P., Gandomi, A.H., Saraswat, M., Eds.; Springer Nature Singapore: Singapore, 2024; pp. 411–430. [Google Scholar]
- Rakesh, S.; Indiramma, M. Explainable AI for Crop Disease Detection. In Proceedings of the 2022 4th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), Greater Noida, India, 16–17 December 2022; pp. 1601–1608. [Google Scholar]
Keyword | Search Terms and Criteria | Number of Papers |
---|---|---|
CWSI | Machine learning, Deep learning, Water stress, Crop, CWSI | 21 |
RGB | Machine learning, Deep learning, Water stress, Crop, RGB | 11 |
Thermal | Machine learning, Deep learning, Water stress, Crop, Thermal | 32 |
Hyperspectral imagery | Machine learning, Deep learning, Water stress, Crop, Hyperspectral | 31 |
Crop | Best Model | Methodologies | Objective | Authors | Publisher | Nation | Year |
---|---|---|---|---|---|---|---|
Chickpea | SVM | SVM, K-Nearest Neighbors, DT, Naive Bayes (NB), Discriminant Analysis (DA) | Using images of chickpea shoots to identify crop water stress due to low soil moisture | [52] | IEEE | India | 2020 |
Maize | Convolutional Neural Network (CNN) | CNN | Recognizing and quantifying water stress in maize using digital imagery | [53] | Elsevier | China | 2020 |
Soybean | Partial Least Squares Discriminant Analysis (PLS-DA) | Partial Least Squares Discriminant Analysis | Applicability and limitations of RGB image-based crop vigor indices in determining chilling stress in soya beans | [54] | Korean Society of Agrometeorology | Korea | 2021 |
Wheat | CNN-LSTM-CNN | CNN, Long Short-Term Memory (LSTM), CNN-CNN, LSTM-LSTM, CNN-LSTM-CNN | Identification and automatic detection of water stress in wheat crops | [55] | Elsevier | China | 2022 |
Wheat and maize | GoogLeNet | AlexNet, GoogLeNet, Inception V3, MobileNet V2, ResNet-50 | Development of a device for real-time assessment of water stress in wheat and maize crops | [56] | Elsevier | India | 2024 |
Crop | Best Model | Methodologies | Objective | Authors | Publisher | Nation | Year |
---|---|---|---|---|---|---|---|
- | ANN | ANN | Implementing a system for monitoring water stress in crops | [61] | IEEE | Romania | 2018 |
Grapes | - | Rotation Forests (ROF), DT | Thermal-image-based estimation and field assessment of water stress in grapes | [62] | PLOS | Spain | 2018 |
Wheat | Classification and Regression Tree (CRT) | CRT algorithm | Thermal-image-based biomass and grain yield prediction of wheat grown under moisture stress in sodic soil environments | [63] | Elsevier | Australia | 2021 |
Brassica | Random Forest (RF) | RF | Assessing crop moisture status with simulated baseline canopy temperature and predicted CWSI for brassica in China | [64] | MDPI | China | 2021 |
Rice | ANN | ANN | Canopy moisture content prediction based on thermal–RGB imaging in rice | [65] | MDPI | China | 2021 |
Cherry | ANN | ANN | Thermal-image-based assessment of cherry moisture status | [66] | Elsevier | Chile | 2022 |
Sugarcane | Inception-Resnet-v2 | Inception-Resnet-v2 | Predicting water stress in sugarcane crops based on thermal imagery | [67] | Elsevier | Brazil | 2022 |
Tomato | VGG-19 | VGG-19 | Water stress classification in tomato crops based on thermal and optical aerial imagery | [68] | J.UCS | Italy | 2022 |
Wheat | ResNet50 | ANN, K-Nearest Neighbors (KNN), Logistic Regression (LO), SVM, LSTM | Water stress assessment using thermal–RGB imaging in winter wheat | [57] | MDPI | India | 2022 |
Rice | Generative Adversarial Network (GAN) | GAN | Monitoring moisture stress with reconstructed thermal images | [32] | IEEE | Indonesia | 2022 |
Rice | RF | RF | Moisture-parameter-based moisture status estimation in rice using thermal imagery | [69] | Elsevier | China | 2023 |
Cotton | MobilenetV3 | VGG16, ResNet-18, MobilenetV3, DenseNet-201, CSPdarknet53 | Predicting water stress in cotton crops based on thermal imagery | [70] | Elsevier | China | 2024 |
Wheat | Gradient-Boosting Decision Tree (GBDT) | GBTD, PLS, SVM | Diagnosing water stress in wheat growth | [71] | Elsevier | China | 2024 |
Crop | Best Model | Methodologies | Objective | Authors | Publisher | Nation | Year |
---|---|---|---|---|---|---|---|
Sugar beet, wine grape | Nash–Sutcliffe | Nash–Sutcliffe, linear model | Estimating baseline canopy temperature for CWSI calculations | [86] | ASABE | USA | 2020 |
Rice | FF-BP-ANN | Self-Organizing Maps (SOM), Feedforward Backpropagation Artificial Neural Network (FF-BP-ANN) | Using machine learning techniques to determine optimal CWSI values for rice | [87] | Taylor & Francis | India | 2023 |
Maize | Linear regression (LR) | LR | Development of a thermal-imaging-based CWSI approach for the assessment of water stress and yield prediction in maize | [88] | Wiley | Thailand | 2023 |
Maize | CatBoost | ANN, LSTM, RF, CatBoost, SVM, KNN, Multiple Linear Regression (MLP), Stacked-RF, Stacked Regression, Weighted Ensemble | CWSI prediction for corn crops | [89] | Elsevier | USA | 2023 |
Cotton | Extreme Gradient Boosting (XGBoost) | SVM, XGBoost, Backpropagation Neural Network (BPNN) | Evaluation of CWSI estimation during the cotton growing season based on UAV multispectral imagery | [90] | Elsevier | China | 2024 |
Wheat, mustard | ANN5 (ANN with five hidden neurons) | SVM, ANN, Adaptive Neuro-Fuzzy Inference System | CWSI prediction using relative humidity, air temperature, and canopy temperature | [91] | Research Square | India | 2024 |
Sorghum, maize | RF | RF, SVM, PLS | Comparing the applicability of the CWSI to the Three-Dimensional Drought Index (TDDI), which consists of temperature, air temperature, and five vegetation indices. | [92] | Elsevier | China | 2024 |
Citrus | Long sequences: CNN-LSTM; short sequences: ConvLSTM | ConvLSTM, CNN-LSTM | CWSI-based water stress prediction | [93] | MDPI | Morocco | 2024 |
Maize | RF | PLS, SVM, RF | Determining water stress indices for monitoring and mapping crop water stress variability | [94] | MDPI | South Africa | 2024 |
Wheat | MLP | MLP, SMOreg, M5P, RF, IBK, Random Trees (RT), bagging, Kstar | CWSI prediction for wheat crops | [95] | ASCE | India | 2024 |
Crop | Best Model | Methodologies | Objective | Authors | Publisher | Nation | Year |
---|---|---|---|---|---|---|---|
Grapes | RF | XGBoost, RF | Hyperspectral-data-based water stress assessment in grapes | [99] | MDPI | South Africa | 2018 |
Lettuce | ANN | ANN | Hyperspectral-data-based water stress assessment in lettuce | [100] | MDPI | Brazil | 2019 |
Maize | SVM and K-means Clustering Algorithm | SVM and K-Means Clustering Algorithm | Hyperspectral-data-based analysis for water stress assessment and recovery in maize | [101] | Elsevier | Belgium | 2019 |
A variety of leaves | CNN | CNN | Estimating leaf water content to quantify water stress | [102] | IEEE | Pakistan | 2019 |
Soybeans, maize | PLSR | PLSR | Assessing plants’ physiological water stress responses | [103] | MDPI | Denmark | 2020 |
Chickpeas | 3D to 2D CNN | 3D to 2D CNN | Assessing water stress in chickpeas based on hyperspectral data acquired by UAVs | [104] | IEEE | India | 2021 |
Potatoes | RF, XGBoost | RF, MLP, CNN, SVM, XGBoost, AdaBoost | Hyperspectral-data-based water stress assessment in potatoes | [105] | MDPI | Colombia | 2021 |
Maize | RF | RF, ANN, MLR | Managing water stress in maize crops and estimating crop traits | [106] | Elsevier | China | 2021 |
Maize | SVM | RF, SVM | Moisture stress detection and optimal wavelength region selection based on hyperspectral data during corn’s grain-filling stage | [107] | IEEE | India | 2022 |
Pearl millet | RFE-SVM | SelectFromModel RF (SFM-RF), SelectFromModel SVM (SFM-SVM), SelectFromEnsemble RF (SFE-RF), Recursive Feature Elimination SVM (RFE-SVM), Chi2 | Identifying canopy moisture stress in pearl millet crops | [108] | IEEE | India | 2022 |
Grapes | RFC | Optimized RF Classifier (RFC), ANN | Hyperspectral-data-based water stress assessment in grapes | [109] | ASABE | USA. | 2022 |
Peanuts | - | SelectFromModel RF (SFM-RF), SelectFromModel SVM (SFM-SVM), SelectFromEnsemble RF (SFE-RF), Recursive Feature Elimination SVM (RFE-SVM) | Canopy water stress assessment based on hyperspectral data in peanuts | [110] | IEEE | India | 2023 |
Maize | RF | LASSO, PLSR, RF | Monitoring plant water stress for plant transpiration rates | [111] | SpringerLink | Belgium | 2023 |
Grapes | PLS | PLS | Soil moisture and grape water stress detection based on hyperspectral data under diffuse illumination | [112] | Elsevier | USA | 2023 |
Wheat | SVM | Wavelet Index Model, MLR, RF, SVM | Monitoring moisture status in winter wheat | [113] | SpringerLink | China | 2023 |
Wheat | (multi-random ensemble on PLSR) MRE-PLSR | RFR (RF Regression), PLSR, MRE-PLSR | Predicting yield at different growth stages of wheat crops under moisture stress conditions | [114] | Elsevier | China | 2024 |
Broccoli | PyCaret | PyCaret, PLS-DA | Assessment of water stress in broccoli based on AutoML and hyperspectral data | [115] | Elsevier | Greece | 2024 |
Rice | GBDT | GBDT | Integrating leaf moisture data from multiple rice varieties to create a model to estimate crop moisture status | [116] | SpringerLink | China | 2024 |
Algorithms Used | Number Uses | Percentage (%) |
---|---|---|
SVM(R) | 6 | 23.6% |
PLS(DA) | 3 | 11.5% |
KNN | 2 | 7.7% |
DT | 2 | 7.7% |
SVM-based models | 2 | 7.7% |
DA | 1 | 3.8% |
NB | 1 | 3.8% |
ROF | 1 | 3.8% |
K-Means | 1 | 3.8% |
CRT | 1 | 3.8% |
LO | 1 | 3.8% |
RFC | 1 | 3.8% |
PyCaret | 1 | 3.8% |
SOM | 1 | 3.8% |
LR | 1 | 3.8% |
ANFIS | 1 | 3.8% |
Total | 26 | 100% |
Algorithms Used | Number Uses | Percentage (%) |
---|---|---|
CNN-based models | 9 | 47.3% |
ANN-based models | 6 | 31.6% |
BPNN | 2 | 10.5% |
MLP | 1 | 5.3% |
LSTM | 1 | 5.3% |
Total | 19 | 100% |
Algorithms Used | Number of Uses | Percentage (%) |
---|---|---|
RF | 5 | 38.4% |
XGBoost | 3 | 23.1% |
RF-based models | 2 | 15.4% |
SVM and K-means Clustering Algorithm | 1 | 7.7% |
Inception-Resnet-v2 | 1 | 7.7% |
AdaBoost | 1 | 7.7% |
Total | 13 | 100% |
Authors | Study Area | Study Period | Data Acquisition Methods | Number of Data | Accuracy |
---|---|---|---|---|---|
[52] | National Institute of Plant Genome Research (NIPGR) | 5 months | The images were taken indoors using a Canon camera in auto mode. | A total of 8000 images were collected, with 240 images per plant. | 73% |
[107] | Institute of Agricultural Research, Chinese Academy of Agricultural Sciences | From October 2020 to May 2022 | Measurements were taken directly in the field using a handheld spectrometer. | A total of 246 sample data points. | 93% |
[108] | Xinxiang City in Henan Province and Xingtai City in Hebei Province, China. | From October 2022 to June 2023 | Hyperspectral data was collected during flight using a drone. | A total of 900 samples were collected from 12 treatments in Xinxiang and Xingtai, with 30 samples per treatment in Xinxiang and 45 in Xingtai. | 95.38% |
[113] | Henan Province, China | 2020 to 2022 | - | - | 93% |
Authors | Study Area | Study Period | Data Acquisition Methods | Number of Data | Accuracy |
---|---|---|---|---|---|
[54] | Central Institute of Agricultural Engineering located in Bhopal, India | from July to October 2020 | RGB images were captured from the top of the rainout shelter using a commercial digital camera. | RGB images were captured a total of 26 times. | - |
[103] | Riso Environmental Risk Assessment Facility (RERAF) in Roskilde, Denmark | from March to June 2018 | Data were collected directly using a FLIR Tau2 324 camera (thermal imaging) and a Cubert UHD 185 camera. | 144 soybean samples, 126 maize samples | 92% |
[112] | a Vitis vinifera L. cv. Riesling vineyard located in Prosser, Washington, USA | In 2021 | Spectral data were collected using a ground-based hyperspectral camera. | A total of 179 leaf samples and 62 soil moisture samples | 89% |
Authors | Study Area | Study Period | Data Acquisition Methods | Number of Data | Accuracy |
---|---|---|---|---|---|
[57] | Research farm at the Central Institute of Agricultural Engineering (CIAE) located in Bhopal, India. | From 2019 to 2021. | Images were collected from a distance of 1 m using an integrated thermal-RGB imaging system based on Raspberry Pi. | A total of 3200 images (1600 RGB and 1600 thermal images). | 96.7% |
[61] | University of Pitesti and Polytechnic of Bucharest, Romania | In 2018 | Images were automatically captured every 1 to 10 min using a FLIR thermal camera (300 × 128 resolution). | A total of 50,000 images | 97.8% |
[65] | Zhejiang University located in Hangzhou, Zhejiang, China | From 10 July to 21 September 2018 | Captured directly using a Canon PowerShot SX720 HS camera and a FLIR Tau2-640 thermal imaging camera. | A total of 400 images were captured, of which 360 images were used. | 99.4% |
[66] | A cherry orchard spanning 13.2 hectares in the Curicó region of Chile. | 2017–2018 and 2018–2019. | Captured at a distance of 3.5 m using a FLIR thermal imaging camera (TIS60, Fluke Corporation). | Collected physical indicators and thermal imaging data from a total of 24 trees. | 83% |
[86] | Idaho, Wyoming, and Oregon in the United States. | Over a period of five years. | Collected based on directly measured canopy temperature and surrounding environmental data. | - | 88% |
[87] | Irrigation Laboratory at the Indian Institute of Technology, Roorkee. | During the rice growing season. | Data collected from laboratory measurements of meteorological variables: relative humidity, air temperature, and canopy temperature. | - | 97% |
[91] | Agricultural research station at the National Institute of Technology in Hamirpur, India. | From 2017 to 2019. | Humidity and air temperature were recorded every 10 min, and canopy temperature was measured with a portable infrared thermometer. | Indian mustard: 1260 for development, 1350 for validation; wheat: 1530 for development, 1458 for validation. | 99% |
[95] | - | From December 2022 to April 2023. | Data were directly collected using a portable infrared radiometer and a weather observation station. | - | - |
[100] | Growth chamber (Phytotron) under controlled conditions at the Federal University of Mato Grosso do Sul in Brazil. | - | Spectrum data were collected in the range of 325–1075 nm using a FieldSpec HandHeld ASD Spectroradiometer. | 360 spectral signatures were measured, with 90 collected over four days of the experiment. | 93% |
Authors | Study Area | Study Period | Data Acquisition Methods | Number of Data | Accuracy |
---|---|---|---|---|---|
[53] | Shaanxi Province, China. | The experiment began on 18 June 2014 and continued throughout the plant growth period. | Images were collected from a height of 4.5 m using a CCD camera mounted on a fixed platform. | A total of 18,040 digital images | 88.41% |
[56] | Central region of India. | From November 2021 to June 2022. | Image data were collected in the field using a Raspberry Pi device and various RGB cameras, including a Canon PowerShot SX740, Raspberry Pi camera, and smartphone. | A total of 3200 RGB images | 97.9% for maize and 92.9% for wheat |
[57] | Research farm at the Central Institute of Agricultural Engineering (CIAE) located in Bhopal, India. | From 2019 to 2021. | Images were collected from a distance of 1 m using an integrated thermal-RGB imaging system based on Raspberry Pi. | A total of 3200 images (1600 RGB and 1600 thermal images). | 98.4% |
[67] | University of São Paulo (USP/ESALQ) located in São Paulo, Brazil. | From 11 August 2019, for a duration of 120 days. | Images were collected using a FLIR ONE Pro LT thermal imaging camera, which was connected to a smartphone. | A total of 4050 thermal images | - |
[68] | A tomato farm near Benevento, southern Italy. | The entire growth cycle of tomato crops. | Collected thermal and optical images using a drone (UAV). | 6600 thermal and 6600 optical images | 80.5% |
[70] | Shihezi University in the Xinjiang region of China. | From May 2023 to August 2023, a total of 150 days. | The FLIR ONE Pro thermal imaging camera was connected to a smartphone for use. | A total of 1300 thermal images | - |
[102] | Institute of Space Technology located in Islamabad, Pakistan. | - | The reflection spectra of plant leaves were collected in the laboratory using a spectroradiometer. | 402 image data sets were collected for 11 plant species, with each image containing 3457 spectral bands. | 98.4% |
[104] | International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) located in Hyderabad, India. | - | Data were collected using a Pika-L Hyperspectral Imaging (HSI) camera mounted on a drone (UAV). | 208 data lines were collected, with 26 genomes per treatment and 8 repetitions. | 95.44% |
Authors | Study Area | Study Period | Data Acquisition Methods | Number of Data | Accuracy |
---|---|---|---|---|---|
[63] | Conducted at two locations in the Goondiwindi region of Australia: medium salinity soil (MS) and high salinity soil (HS). | From May to November 2018. | Thermal images were collected with a FLIR Tau 2 camera on a DJI Matrice 600 Pro drone, along with a MicaSense RedEdge-M multispectral camera. | - | - |
[64] | South China Agricultural University located in Guangzhou, China. | From 27 November 2020 to 31 December 2020, and from 25 May 2021 to 20 June 2021. | Canopy temperature was measured at 0.3 m every 10 min with an infrared radiometer, while weather sensors recorded air temperature, humidity, wind speed, and photosynthetically active radiation. | - | 0.91% |
[69] | Luogao Experimental Base in Jiangsu Province, China. | From 2019 to 2020. | Thermal images were collected using a FLIR SC620 thermal camera from a height of 1 m, at 2-hour intervals between 8 AM and 4 PM. | A total of 205 data | 78% |
[71] | China Agricultural University Experimental Station in Zhuozhou, Hebei Province, China | March to June, 2021 and 2022 | UAV multispectral and thermal remote sensing | 14 vegetation indices and 2 thermal indices measured over 6 key growth stages | 90% |
[89] | West Central Research, Extension, and Education Center, University of Nebraska-Lincoln, Nebraska, USA | 2020 and 2021 | Sensor data assimilation (weather sensors, soil moisture sensors, infrared thermometers, etc.), real-time climate and soil moisture monitoringh | 540 total data points (30 days × 3 months × 2 years) | - |
[90] | Yuli County, Xinjiang, China, in the alluvial plain downstream of the Tarim and Peacock Rivers | Cotton sown on 4 April 2021, and harvested on 20 September 2021 | UAV-based multispectral and thermal imaging using MicaSense Altum camera attached to DJI M200 V2 UAV | 2946 valid images collected over five field measurement dates | 90% |
[92] | Jichangbuyi Miao Township, Anshun City, Guizhou Province, China | Crops were sown in May 2023, with data collected until maturity in August. | A DJI Matrice300 RTK UAV equipped with MS600Pro multispectral and Zenmuse H20T thermal-infrared sensors was used. | Ground-based VMC data were collected from 155 samples (108 for training and 47 for validation). | 76% |
[94] | Smallholder farm in southern Africa, specifically in the Swayimana rural area, uMshwathi Local Municipality, KwaZulu-Natal Province, South Africa. | 8 February 2021 to 26 May 2021. | Collected using a DJI Matrice 300 UAV equipped with a MicaSense Altum sensor and a handheld infrared thermometer. | 3576 images | 85% |
[99] | Welgevallen experimental farm, Stellenbosch, Western Cape, South Africa. | - | Terrestrial hyperspectral imaging using the SIMERA HX MkII hyperspectral sensor. | A total of 60 leaf spectra samples | 83.3% |
[105] | Tibaitatá Research Center, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Cundinamarca, Colombia | In 2021 | Hyperspectral imagery (400–1000 nm) using 128 spectral bands from a Surface Optics Corporation 710-VP camera | A total of 116 images | 99.7% |
[106] | A 1.13-hectare maize field located in Zhaojun Town, Inner Mongolia, China | 2018 and 2019 growing seasons | UAV imagery was collected using a self-developed hexacopter equipped with a MicaSense RedEdge camera for multispectral imagery, and a DJI Phantom 4 Pro for RGB imagery. | A total of 165 multispectral and 161 RGB images were collected in 2018, and 135 multispectral and 134 RGB images in 2019. | 89% |
[109] | An experimental vineyard in arid southeastern Washington, USA. | Data collected over two growing seasons. | Hyperspectral images acquired from a ground-based utility vehicle. | - | 73% |
[111] | PHENOVISION automated phenotyping platform, a semi-controlled greenhouse, Belgium. | - | Proximal thermal and hyperspectral imaging using a high-throughput plant phenotyping platform. | 14,744 images and 288 additional physiological trait images were collected. | 63% |
[114] | Comprehensive Experimental Base of the Chinese Academy of Agricultural Sciences, Xinxiang City, Henan Province and Yanli Experimental Base, Xingtai City, Hebei Province, China | From 2022 to 2023 | UAV-based hyperspectral data acquisition using a DJM600 Pro UAV equipped with a Resonon Pika L nano-hyperspectral scanner. | - | - |
[116] | Hefei, Anhui Province and Fuyang, Anhui Province, China | From 2021 to 2022 | Hyperspectral remote sensing using the ASD FieldSpec 4 device for spectral data collection. | A total 91 sample data points | 86% |
Authors | Study Area | Study Period | Data Acquisition Methods | Number of Data | Accuracy |
---|---|---|---|---|---|
[55] | Zhejiang University, Hangzhou, China | from October 2019 to January 2020. | IoT-based multimodal data acquisition, including RGB images, soil moisture sensors, air temperature, relative humidity, and wind speed. | 876 images expanded to 5256 with augmentation. | 100% |
[63] | Goondiwindi, northeastern grains growing region, Australia. | 2018 wheat growing season (May to November). | UAV thermal remote sensing with a FLIR Tau 2 camera on a DJI Matrice 600 Pro, collecting data | - | - |
[32] | Ismail, Daddy Budiman, Ervan Asri, Zass Ressy Aidha | - | Visible images were used to generate thermal images using a deep learning-based GAN model. | - | - |
[88] | Phitsanulok Province, Thailand (Thapo sub-district and Wang Thong district) | from 2018 to 2020 | Data were collected using a FLIR C2 camera for thermal imaging positioned above the crop canopy, along with soil moisture sensors and weather data. | - | 90% |
[93] | Ourgha Farm, Khnichet rural commune, Sidi Kacem Province, Morocco | from 2015 to 2023 | Remote sensing data obtained from Landsat 8 satellite images processed through Google Earth Engine, focusing on the Crop Water Stress Index (CWSI). | 50 Landsat 8 satellite images | - |
[101] | PHENOVISION high-throughput phenotyping platform, VIB, Ghent, Belgium | 50 days of plant growth were monitored, beginning from the V2 growth stage. | Hyperspectral imaging using a VNIR-HS line scan push-broom camera (ImSpector V10E), capturing images across 194 spectral bands (400–1000 nm). | 1900 hyperspectral images were collected from six drought treatment groups. | 96% |
[110] | International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India | from November 2021 to February 2022. | Hyperspectral imaging using a Resonon Pika-L camera on a DJI Matrice-600 Pro UAV, capturing 300 bands (385–1020 nm). | 16,000 samples were collected with 1000 per genotype per class. | 96.46% |
[115] | Agricultural University of Athens, Athens, Greece | In 2024 | Hyperspectral imaging with a Snapscan VNIR camera on a three-wheel platform using natural sunlight. | 120 images were captured, reduced to 90 after outlier removal (42 from drought onset, 48 from acclimation). | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, S.B.; Soleh, H.M.; Choi, J.W.; Hwang, W.-H.; Lee, H.; Cho, Y.-S.; Cho, B.-K.; Kim, M.S.; Baek, I.; Kim, G. Recent Methods for Evaluating Crop Water Stress Using AI Techniques: A Review. Sensors 2024, 24, 6313. https://doi.org/10.3390/s24196313
Cho SB, Soleh HM, Choi JW, Hwang W-H, Lee H, Cho Y-S, Cho B-K, Kim MS, Baek I, Kim G. Recent Methods for Evaluating Crop Water Stress Using AI Techniques: A Review. Sensors. 2024; 24(19):6313. https://doi.org/10.3390/s24196313
Chicago/Turabian StyleCho, Soo Been, Hidayat Mohamad Soleh, Ji Won Choi, Woon-Ha Hwang, Hoonsoo Lee, Young-Son Cho, Byoung-Kwan Cho, Moon S. Kim, Insuck Baek, and Geonwoo Kim. 2024. "Recent Methods for Evaluating Crop Water Stress Using AI Techniques: A Review" Sensors 24, no. 19: 6313. https://doi.org/10.3390/s24196313
APA StyleCho, S. B., Soleh, H. M., Choi, J. W., Hwang, W. -H., Lee, H., Cho, Y. -S., Cho, B. -K., Kim, M. S., Baek, I., & Kim, G. (2024). Recent Methods for Evaluating Crop Water Stress Using AI Techniques: A Review. Sensors, 24(19), 6313. https://doi.org/10.3390/s24196313