Artificial Intelligence-Driven Prognosis of Respiratory Mechanics: Forecasting Tissue Hysteresivity Using Long Short-Term Memory and Continuous Sensor Data
Abstract
:1. Introduction
- The first approach aims to enhance the estimation of the hysteresivity coefficient by employing continuously recorded heart rate data, thereby reducing the frequency of required measurements.
- The second approach focuses on forecasting to anticipate respiratory issues, enabling early detection and intervention. Furthermore, FOT measurements can be used as daily calibration measurements.
2. Material and Methods
2.1. Forced Oscillation Technique
2.2. Equivital Physiological Signal Monitoring
2.3. Measurement Protocol
- Two-minute FOT Measurement: Marked in blue, this phase starts each measurement session. Participants breathe normally while seated for 120 s.
- Five-minute Rest: Indicated in gray, this is a rest period.
- One-minute RESMON Measurement: Shown in pink, this phase involves using the RESMON device. Participants breathe normally while seated for 60 s.
- Five-minute Rest: Another rest period, depicted in gray.
2.4. Subjects
2.5. Proposed Estimation Algorithm
2.6. Proposed Forecasting Algorithm
2.7. Performance Metrics
- (i)
- Mean Squared Error (MSE): MSE measures the average squared difference between the actual and predicted values and is calculated as follows:
- (ii)
- Coefficient of Determination (): quantifies the proportion of the variance in the dependent variable that is predictable from the independent variable(s) and is given by
3. Results
3.1. Estimation Approach Results
3.2. Forecasting Approach Results
4. Discussion
4.1. Findings
4.2. Clinical Application
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Calculation of the η Parameter
Appendix B. LSTM Model Architecture
- Input Gate (): The input gate controls the flow of new information into the cell state. It is computed using the sigmoid activation function and is defined as
- Forget Gate (): The forget gate controls the retention of past information in the cell state and acts as a weighting factor for past-to-new data. It is computed similarly to the input gate and is defined as
- Candidate Cell State (): The candidate cell state represents the new information that could be stored in the cell state. It is computed using the hyperbolic tangent activation function and is defined as
- Cell State Update (): The cell state is updated by combining the previous cell state with the new information from the input gate and candidate cell state:
- Output Gate (): The output gate controls what information from the cell state should be used to compute the output. It is defined as
Appendix C. ECG Lead I and Lead II Placements
- Right Arm (RA): Electrode placed on the right arm.
- Left Arm (LA): Electrode placed on the left arm.
- Left Leg (LL): Electrode placed above the left ankle.
Appendix D. Estimation Mechanism Used to Predict η
Appendix E. Forecasting Mechanism Used to Predict η
References
- Andreozzi, E.; Gargiulo, G.D.; Esposito, D.; Bifulco, P. A novel broadband forcecardiography sensor for simultaneous monitoring of respiration, infrasonic cardiac vibrations and heart sounds. Front. Physiol. 2021, 12, 725716. [Google Scholar] [CrossRef] [PubMed]
- Busschots, C.; Keymolen, A.; Verbanck, S.; Schuermans, D.; Maes, H.; Peumans, D.; Pattyn, J.; Rolain, Y.; Vandersteen, G.; Lataire, J. Adaptive excitation signals for low-frequency forced oscillation technique measurements in patients. IEEE Trans. Instrum. Meas. 2021, 70, 4005109. [Google Scholar] [CrossRef]
- Starczewska-Dymek, L.; Bożek, A.; Dymek, T. Application of the forced oscillation technique in diagnosing and monitoring of asthma in preschool children. Adv. Respir. Med. 2019, 87, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, P.; Myers, S.; Chia, C.; Weber, H.C.; Young, S.; Williams, A.D.; Sohal, S.S. Clinical application of forced oscillation technique (FOT) in early detection of airway changes in smokers. J. Clin. Med. 2020, 9, 2778. [Google Scholar] [CrossRef] [PubMed]
- Ghita, M.; Copot, D.; Ghita, M.; Derom, E.; Ionescu, C. Low Frequency Forced Oscillation Lung Function Test Can Distinguish Dynamic Tissue Non-linearity in COPD Patients. Front. Physiol. 2019, 10, 1390. [Google Scholar] [CrossRef]
- Ghita, M.; Billiet, C.; Copot, D.; Verellen, D.; Ionescu, C.M. Parameterisation of respiratory impedance in lung cancer patients from forced oscillation lung function test. IEEE Trans. Biomed. Eng. 2022, 70, 1587–1598. [Google Scholar] [CrossRef]
- Marchal, A.; Keymolen, A.; van den Elshout, B.; Vandersteen, G.; Lataire, J. Breathing removal using Gaussian process regression for improved parametric impedance estimation of human respiratory system. IFAC-PapersOnLine 2023, 56, 10509–10514. [Google Scholar] [CrossRef]
- Soares, M.; Richardson, M.; Thorpe, J.; Owers-Bradley, J.; Siddiqui, S. Comparison of Forced and Impulse Oscillometry Measurements: A Clinical Population and Printed Airway Model Study. Sci. Rep. 2019, 9, 2130. [Google Scholar] [CrossRef]
- Nilsen, K.; Gove, K.; Thien, F.; Wilkinson, T.; Thompson, B. Comparison of two methods of determining lung de-recruitment, using the forced oscillation technique. Eur. J. Appl. Physiol. 2018, 118, 2213–2224. [Google Scholar] [CrossRef]
- Ionescu, C. The Human Respiratory System: An Analysis of the Interplay between Anatomy, Structure, Breathing and Fractal Dynamics; Series in BioEngineering; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Qian, W.; Desai, A.; Therkorn, J.H.; Klein-Adams, J.C.; Sotolongo, A.M.; Falvo, M.J. Employing the forced oscillation technique for the assessment of respiratory mechanics in adults. JoVE J. Vis. Exp. 2022, e63165. [Google Scholar] [CrossRef]
- Liao, K.M.; Ko, S.C.; Liu, C.F.; Cheng, K.C.; Chen, C.M.; Sung, M.I.; Hsing, S.C.; Chen, C.J. Development of an interactive AI system for the optimal timing prediction of successful weaning from mechanical ventilation for patients in respiratory care centers. Diagnostics 2022, 12, 975. [Google Scholar] [CrossRef]
- Lu, J.; Bu, P.; Xia, X.; Lu, N.; Yao, L.; Jiang, H. Feasibility of machine learning methods for predicting hospital emergency room visits for respiratory diseases. Environ. Sci. Pollut. Res. 2021, 28, 29701–29709. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.K.; Ritam, M.; Han, L.; Guo, S.; Chandra, R. Deep learning for predicting respiratory rate from biosignals. Comput. Biol. Med. 2022, 144, 105338. [Google Scholar] [CrossRef] [PubMed]
- Ben Othman, G.; Copot, D.; Yumuk, E.; Neckebroek, M.; Ionescu, C.M. Selecting Optimal Long Short-Term Memory (LSTM) Architectures for Online Estimation of Mean Arterial Pressure (MAP) in Patients Undergoing General Anesthesia. Appl. Sci. 2024, 14, 5556. [Google Scholar] [CrossRef]
- Pham, T.D. Time–frequency time–space LSTM for robust classification of physiological signals. Sci. Rep. 2021, 11, 6936. [Google Scholar] [CrossRef] [PubMed]
- Heynen, J.; Copot, D.; Ghita, M.; Ionescu, C.M. Using convolutional neural network online estimators for predicting pain-level variability enables predictive control of anesthesia. In Proceedings of the 2021 25th International Conference on System Theory, Control and Computing (ICSTCC), Iasi, Romania, 20–23 October 2021; IEEE: New York, NY, USA, 2021; pp. 194–199. [Google Scholar]
- Ijaz, A.; Nabeel, M.; Masood, U.; Mahmood, T.; Hashmi, M.S.; Posokhova, I.; Rizwan, A.; Imran, A. Towards using cough for respiratory disease diagnosis by leveraging Artificial Intelligence: A survey. Inform. Med. Unlocked 2022, 29, 100832. [Google Scholar] [CrossRef]
- Mohamadou, Y.; Halidou, A.; Kapen, P.T. A review of mathematical modeling, artificial intelligence and datasets used in the study, prediction and management of COVID-19. Appl. Intell. 2020, 50, 3913–3925. [Google Scholar] [CrossRef]
- Alassafi, M.O.; Jarrah, M.; Alotaibi, R. Time series predicting of COVID-19 based on deep learning. Neurocomputing 2022, 468, 335–344. [Google Scholar] [CrossRef]
- Gonem, S.; Janssens, W.; Das, N.; Topalovic, M. Applications of artificial intelligence and machine learning in respiratory medicine. Thorax 2020, 75, 695–701. [Google Scholar] [CrossRef]
- Oostveen, E.; Boda, K.; van der Grinten, C.; James, A.; Young, S.; Nieland, H.; Hantos, Z. Respiratory impedance in healthy subjects: Baseline values and bronchodilator response. Eur. Respir. J. 2013, 42, 1513–1523. [Google Scholar] [CrossRef]
- Karbing, D.; Leonhardt, S.; Perchiazzi, G.; Bates, J. What is new in respiratory monitoring? J. Clin. Monit. Comput. 2022, 36, 599–607. [Google Scholar] [CrossRef]
- Ionescu, C. Lung Function Testing in the 21st Century: Methodologies and Tools Bridging Engineering to Clinical Practice, 1st ed.; Elsevier: London, UK, 2019. [Google Scholar]
- Hawthorne, G.; Richardson, M.; Greening, N.; Esliger, D.; Briggs-Price, S.; Chaplin, E.; Clinch, L.; Steiner, M.; Singh, S.; Orme, M. A proof of concept for continuous, non-invasive, free-living vital signs monitoring to predict readmission following an acute exacerbation of COPD: A prospective cohort study. Respir. Res. 2022, 23, 102. [Google Scholar] [CrossRef]
- Ionescu, C.M.; Ghita, M. Model-Based Regional Control with Anomalous Diffusion of Multi-Drug Combined Cancer Therapy for Volume Predictions. Symmetry 2023, 15, 51. [Google Scholar] [CrossRef]
- Jin, G.; Yi, X.; Zhang, L.; Zhang, L.; Schewe, S.; Huang, X. How does weight correlation affect generalisation ability of deep neural networks? Adv. Neural Inf. Process. Syst. 2020, 33, 21346–21356. [Google Scholar]
- Chen, J.; Liu, Z.; Yin, Z.; Liu, X.; Li, X.; Yin, L.; Zheng, W. Predict the effect of meteorological factors on haze using BP neural network. Urban Clim. 2023, 51, 101630. [Google Scholar] [CrossRef]
- Ben Othman, G.; Sidhom, L.; Chihi, I.; Kamavuako, E.N.; Trabelsi, M. ECG Data Forecasting Based on Linear Models Approach: A Comparative Study. In Proceedings of the 2023 20th International Multi-Conference on Systems, Signals & Devices (SSD), Mahdia, Tunisia, 20–23 February 2023; pp. 339–344. [Google Scholar] [CrossRef]
- Koul, A.; Bawa, R.K.; Kumar, Y. Artificial intelligence techniques to predict the airway disorders illness: A systematic review. Arch. Comput. Methods Eng. 2023, 30, 831–864. [Google Scholar] [CrossRef] [PubMed]
- Potturu, S.R.; Rajnish, K.; Sandhan, T. AI based Stability Prediction and Analysis of Human Respiratory System. In Proceedings of the 2023 International Conference on Microwave, Optical, and Communication Engineering (ICMOCE), Bhubaneswar, India, 26–28 May 2023; IEEE: New York, NY, USA, 2023; pp. 1–5. [Google Scholar]
- Felici-Castell, S.; Segura-Garcia, J.; Perez-Solano, J.J.; Fayos-Jordan, R.; Soriano-Asensi, A.; Alcaraz-Calero, J.M. AI-IoT low-cost pollution-monitoring sensor network to assist citizens with respiratory problems. Sensors 2023, 23, 9585. [Google Scholar] [CrossRef]
- Sriwongpan, P.; Krittigamas, P.; Tantipong, H.; Patumanond, J.; Tawichasri, C.; Namwongprom, S. Clinical risk-scoring algorithm to forecast scrub typhus severity. Risk Manag. Healthc. Policy 2014, 7, 11–17. [Google Scholar]
- Slobod, D.; Leali, M.; Spinelli, E.; Grieco, D.L.; Spadaro, S.; Mauri, T. Integrating electrical impedance tomography and transpulmonary pressure monitoring to personalize PEEP in hypoxemic patients undergoing pressure support ventilation. Crit. Care 2022, 26, 314. [Google Scholar] [CrossRef]
- Kumar, P.; Das, A.K.; Halder, S. Respiration rate variability analysis under different body postures. In Proceedings of the 2020 IEEE-HYDCON, Hyderabad, India, 11–12 September 2020; IEEE: New York, NY, USA, 2020; pp. 1–4. [Google Scholar]
- Sharma, S.; Kumar, V. Application of genetic algorithms in healthcare: A review. In Next Generation Healthcare Informatics; Springer: Berlin/Heidelberg, Germany, 2022; pp. 75–86. [Google Scholar]
- MathWorks. Genetic Algorithm. 2024. Available online: https://www.mathworks.com/help/gads/ga.html (accessed on 25 July 2024).
- Ghita, M.; Birs, I.R.; Copot, D.; Muresan, C.I.; Neckebroek, M.; Ionescu, C.M. Parametric Modeling and Deep Learning for Enhancing Pain Assessment in Postanesthesia. IEEE Trans. Biomed. Eng. 2023, 70, 2991–3002. [Google Scholar] [CrossRef]
- Ben Othman, G.; Kumar, A.A.; Hassine, F.B.; Copot, D.; Sidhom, L.; Kamavuako, E.N.; Trabelsi, M.; Ionescu, C.M.; Chihi, I. Sustainability and predictive accuracy evaluation of gel and embroidered electrodes for ECG monitoring. Biomed. Signal Process. Control. 2024, 96, 106632. [Google Scholar] [CrossRef]
- Shyam Kumar, P.; Ramasamy, M.; Kallur, K.R.; Rai, P.; Varadan, V.K. Personalized LSTM Models for ECG Lead Transformations Led to Fewer Diagnostic Errors Than Generalized Models: Deriving 12-Lead ECG from Lead II, V2, and V6. Sensors 2023, 23, 1389. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chen, C.; Yun, M.; Issa, T.; Lin, A.; Nguyen, T.P. Constructing adult zebrafish Einthoven’s triangle to define electrical heart axes. Front. Physiol. 2021, 12, 708938. [Google Scholar] [CrossRef] [PubMed]
- Beale, M.H.; Hagan, M.T.; Demuth, H.B. Deep learning toolbox. In User’s Guide; The MathWorks Inc.: Natick, MA, USA, 2018. [Google Scholar]
ID | Age (Years) | Weight (kg) | Height (cm) | BMI (kg/m2) |
---|---|---|---|---|
1 | 37 | 53 | 165 | 19 |
2 | 40 | 85 | 180 | 26 |
3 | 28 | 62 | 160 | 24 |
4 | 35 | 78 | 172 | 26 |
5 | 29 | 90 | 179 | 28 |
6 | 28 | 51 | 163 | 19 |
FOT Device | RESMON Device | |||||
---|---|---|---|---|---|---|
Volunteer | MSE | p -Value | MSE | p -Value | ||
1 | 0.321 | 0.598 | 0.654 | 0.201 | 0.802 | 0.884 |
2 | 0.106 | 0.781 | 0.948 | 0.091 | 0.861 | 0.992 |
3 | 1.405 | 0.472 | 0.526 | 1.405 | 0.341 | 0.745 |
4 | 0.116 | 0.795 | 0.982 | 0.254 | 0.786 | 0.976 |
5 | 0.833 | 0.805 | 0.822 | 0.262 | 0.824 | 0.865 |
6 | 0.296 | 0.851 | 0.782 | 0.354 | 0.798 | 0.770 |
FOT Device | RESMON Device | |||||
---|---|---|---|---|---|---|
Volunteer | MSE | p -Value | MSE | p -Value | ||
1 | 3.149 | 0.563 | 0.136 | 0.528 | 0.883 | 0.956 |
2 | 0.129 | 0.727 | 0.973 | 1.057 | 0.588 | 0.877 |
3 | 0.838 | 0.726 | 0.839 | 1.406 | 0.531 | 0.679 |
4 | 3.487 | 0.427 | 0.181 | 0.807 | 0.622 | 0.625 |
5 | 1.122 | 0.832 | 0.668 | 1.174 | 0.669 | 0.656 |
6 | 3.690 | 0.392 | 0.343 | 0.692 | 0.724 | 0.959 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Othman, G.B.; Ynineb, A.R.; Yumuk, E.; Farbakhsh, H.; Muresan, C.; Birs, I.R.; De Raeve, A.; Copot, C.; Ionescu, C.M.; Copot, D. Artificial Intelligence-Driven Prognosis of Respiratory Mechanics: Forecasting Tissue Hysteresivity Using Long Short-Term Memory and Continuous Sensor Data. Sensors 2024, 24, 5544. https://doi.org/10.3390/s24175544
Othman GB, Ynineb AR, Yumuk E, Farbakhsh H, Muresan C, Birs IR, De Raeve A, Copot C, Ionescu CM, Copot D. Artificial Intelligence-Driven Prognosis of Respiratory Mechanics: Forecasting Tissue Hysteresivity Using Long Short-Term Memory and Continuous Sensor Data. Sensors. 2024; 24(17):5544. https://doi.org/10.3390/s24175544
Chicago/Turabian StyleOthman, Ghada Ben, Amani R. Ynineb, Erhan Yumuk, Hamed Farbakhsh, Cristina Muresan, Isabela Roxana Birs, Alexandra De Raeve, Cosmin Copot, Clara M. Ionescu, and Dana Copot. 2024. "Artificial Intelligence-Driven Prognosis of Respiratory Mechanics: Forecasting Tissue Hysteresivity Using Long Short-Term Memory and Continuous Sensor Data" Sensors 24, no. 17: 5544. https://doi.org/10.3390/s24175544