Vehicle Localization Using Crowdsourced Data Collected on Urban Roads
Abstract
:1. Introduction
2. Localization Based on Crowdsourced Data
2.1. Crowdsourced Data and HD Maps
2.2. Bidirectional Local Tracking with Map Matching
2.3. Local Pose Graph Optimization
3. Localization Diagnosis
3.1. Odometry-Based Keyframe Pose Diagnosis
3.2. Pose Clustering with Outlier Filtering
4. Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, Y.; Ma, H.; Smart, E.; Yu, H. Real-time Performance-focused Localization Techniques for Autonomous Vehicle: A Review. IEEE Trans. Intell. Transp. Syst. 2021, 23, 6082–6100. [Google Scholar] [CrossRef]
- Chalvatzaras, A.; Pratikakis, I.; Amanatiadis, A.A. A Survey on Map-Based Localization Techniques for Autonomous Vehicles. IEEE Trans. Intell. Veh. 2023, 8, 1574–1596. [Google Scholar] [CrossRef]
- Suhr, J.K.; Jang, J.; Min, D.; Jung, H.G. Sensor Fusion-Based Low-Cost Vehicle Localization System for Complex Urban Environments. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1078–1086. [Google Scholar] [CrossRef]
- Vivacqua, R.; Vassallo, R.; Martins, F. A Low Cost Sensors Approach for Accurate Vehicle Localization and Autonomous Driving Application. Sensors 2017, 17, 2359. [Google Scholar] [CrossRef] [PubMed]
- Pauls, J.-H.; Petek, K.; Poggenhans, F.; Stiller, C. Monocular Localization in HD Maps by Combining Semantic Segmentation and Distance Transform. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021; pp. 4595–4601. [Google Scholar]
- Wen, T.; Xiao, Z.; Wijaya, B.; Jiang, K.; Yang, M.; Yang, D. High precision vehicle localization based on tightly-coupled visual odometry and vector hd map. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13 November 2020; pp. 672–679. [Google Scholar]
- Li, L.; Yang, M.; Li, H.; Wang, C.; Wang, B. Robust Localization for Intelligent Vehicles Based on Compressed Road Scene Map in Urban Environments. IEEE Trans. Intell. Veh. 2017, 8, 252–262. [Google Scholar] [CrossRef]
- Pannen, D.; Liebner, M.; Hempel, W.; Burgard, W. How to keep HD maps for automated driving up to date. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 2288–2294. [Google Scholar]
- Kim, C.; Cho, S.; Sunwoo, M.; Jo, K. Crowd-Sourced Mapping of New Feature Layer for High-Definition Map. Sensors 2023, 18, 4172. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Cho, S.; Chung, W. HD map update for autonomous driving with crowdsourced data. IEEE Robot. Autom. Lett. 2021, 6, 1895–1901. [Google Scholar] [CrossRef]
- Pannen, D.; Liebner, M.; Burgard, W. Lane marking learning based on crowdsourced data. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 7040–7046. [Google Scholar]
- Zhang, P.; Zhang, M.; Liu, J. Real-time HD map change detection for crowdsourcing update based on mid-to-high-end sensors. Sensors 2021, 21, 2477. [Google Scholar] [CrossRef] [PubMed]
- Zhanabatyrova, A.; Souza Leite, C.F.; Xiao, Y. Automatic Map Update Using Dashcam Videos. IEEE Internet Things J. 2023, 10, 11825–11843. [Google Scholar] [CrossRef]
- Mahlberg, J.A.; Li, H.; Zachrisson, B.; Leslie, D.K.; Bullock, D.M. Pavement Quality Evaluation Using Connected Vehicle Data. Sensors 2022, 22, 9109. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Tomko, M.; Winter, S.; Ganguly, N. Traffic count estimation using crowd-sourced trajectory data in the absence of dedicated infrastructure. Pervasive Mob. Comput. 2024, 102, 101935. [Google Scholar] [CrossRef]
- Zheng, W.; Xu, H.; Li, P.; Wang, R.; Shao, X. SAC-RSM: A High-Performance UAV-Side Road Surveillance Model Based on Super-Resolution Assisted Learning. IEEE Internet Things J. 2024; early access. [Google Scholar] [CrossRef]
- Elhashash, M.; Albanwan, H.; Qin, R. A Review of Mobile Mapping Systems: From Sensors to Applications. Sensors 2022, 22, 4262. [Google Scholar] [CrossRef] [PubMed]
- Doer, C.; Henzler, M.; Messner, H.; Trommer, G.F. HD Map Generation from Vehicle Fleet Data for Highly Automated Driving on Highways. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13 November 2020; pp. 2014–2020. [Google Scholar]
- Liebner, M.; Jain, D.; Schauseil, J.; Pannen, D.; Hackeloer, A. Crowdsourced HD map patches based on road model inference and graph-based slam. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 1211–1218. [Google Scholar]
- Elfring, J.; Dani, S.; Shakeri, S.; Mesri, H.; van den Brand, J.W. Vehicle localization using a traffic sign map. IEEE Trans. Intell. Transp. Syst. 2017, 1–6. [Google Scholar] [CrossRef]
- Choi, M.; Suhr, J.; Choi, K.; Jung, H. Low-Cost Precise Vehicle Localization Using Lane Endpoints and Road Signs for Highway Situations. IEEE Access. 2019, 7, 149846–149856. [Google Scholar] [CrossRef]
- Segal, A.; Hhnel, D.; Thrun, S. Generalized-ICP. In Proceedings of the Robotics: Science and Systems V (RSS), Seattle, WA, USA, 28 June–1 July 2009. [Google Scholar]
- Moré, J.J. The Levenberg-Marquardt Algorithm: Implementation and Theory, in Numerical Analysis; Springer: Berlin/Heidelberg, Germany, 1978; pp. 105–116. [Google Scholar]
- Grisetti, G.; Kummerle, R.; Stachniss, C.; Burgard, W. A tutorial on graph-based SLAM. IEEE Intell. Trans. Syst. Mag. 2010, 2, 31–43. [Google Scholar] [CrossRef]
- Kummerle, R.; Grisetti, G.; Strasdat, H.; Konolige, K.; Burgard, W. G2O: A general framework for graph optimization. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011. [Google Scholar]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD’96, Portland, OR, USA, 2–4 August 1996; AAAI Press: Palo Alto, CA, USA, 1996; pp. 226–231. [Google Scholar]
- Leys, C.; Ley, C.; Klein, O.; Bernard, P.; Licata, L. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 2013, 49, 764–766. [Google Scholar] [CrossRef]
- Kumar, M.; Garg, D.P.; Zachery, R.A. A generalized approach for inconsistency detection in data fusion from multiple sensors. In Proceedings of the 2006 American Control Conference, Minneapolis, MN, USA, 14–16 June 2006. [Google Scholar]
- Gonzalez, T.; Diaz-Herrera, J.; Tucker, A. Computing Handbook: Computer Science and Software Engineering, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
Area | Length of Link (km) | Driving Distance (km) | Rejection (%) | Raw Data (%) | Proposed (%) |
---|---|---|---|---|---|
1 | 5.8 | 340.8 | 63.8 | 72.0 | 94.5 |
2 | 4.3 | 338.4 | 67.5 | 63.9 | 90.2 |
3 | 10.6 | 1289.8 | 52.8 | 74.4 | 91.8 |
4 | 2.2 | 945.7 | 48.4 | 75.0 | 88.3 |
5 | 6.0 | 763.3 | 69.4 | 54.4 | 89.6 |
6 | 3.3 | 386.0 | 51.1 | 75.6 | 92.7 |
7 | 2.2 | 71.8 | 57.5 | 72.2 | 98.3 |
8 | 0.7 | 77.7 | 62.8 | 75.1 | 91.8 |
Overall | 35.1 | 4213.5 | 57.0 | 69.9 | 90.9 |
Method | Accuracy (m) | Precision (m) |
---|---|---|
Raw data (p) | 1.05 | 1.46 |
Proposed | 0.53 | 0.78 |
Method | Accuracy (m) | Precision (m) |
---|---|---|
Raw data (p) | 0.29 | 0.39 |
Proposed | 0.21 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, S.; Chung, W. Vehicle Localization Using Crowdsourced Data Collected on Urban Roads. Sensors 2024, 24, 5531. https://doi.org/10.3390/s24175531
Cho S, Chung W. Vehicle Localization Using Crowdsourced Data Collected on Urban Roads. Sensors. 2024; 24(17):5531. https://doi.org/10.3390/s24175531
Chicago/Turabian StyleCho, Soohyun, and Woojin Chung. 2024. "Vehicle Localization Using Crowdsourced Data Collected on Urban Roads" Sensors 24, no. 17: 5531. https://doi.org/10.3390/s24175531
APA StyleCho, S., & Chung, W. (2024). Vehicle Localization Using Crowdsourced Data Collected on Urban Roads. Sensors, 24(17), 5531. https://doi.org/10.3390/s24175531